![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Computer software packages > Computer graphics software
Digital fringe projection (DFP) techniques are used for non-contact shape measurement of 3D images. In the rapidly expanding field of 3D high-speed imaging, the demand for DFP continues to grow due to the technology's fast speed, flexibility, low cost, and high accuracy. High-Speed 3D Imaging with Digital Fringe Projection Techniques discusses the generation of digital fringe with digital video projection devices, covering a variety of core technical aspects. The book begins by establishing the theoretical foundations of fringe pattern analysis, reviewing various 3D imaging techniques while highlighting the advantages of DFP. The author then: Describes the differences between digital light processing (DLP), liquid crystal display (LCD), and liquid crystal on silicon (LCoS) Explains how to unwrap phase maps temporally and spatially Shows how to generate fringe patterns with video projectors Demonstrates how to convert phase to coordinates through system calibrations Provides a detailed example of a built-from-scratch 3D imaging system Incorporating valuable insights gained during the author's 15+ years of 3D imaging research, High-Speed 3D Imaging with Digital Fringe Projection Techniques illuminates the pathway to advancement in high-speed 3D optical imaging using DFP.
The complexity of specifications and the number of materials options available today for concrete production mean that the traditional procedure of making trial mixes is now unnecessary, expensive and time consuming. Using J.D Dewar's research, this book shows how a small amount of materials data can be used confidently to predict the composition of the ideal product.
In this monograph, a new process modelling approach for the public sector is described: the PICTURE method. The approach takes into account the specific characteristics of public administrations. Hence several advantages are derived: increased modelling speed, improved user acceptance and enhanced analysis capabilities.
The use of simulation modeling and analysis is becoming increasingly more popular as a technique for improving or investigating process performance. This book is a practical, easy-to-follow reference that offers up-to-date information and step-by-step procedures for conducting simulation studies. It provides sample simulation project support material, including checklists, data-collection forms, and sample simulation project reports and publications to facilitate practitioners' efforts in conducting simulation modeling and analysis projects. Simulation Modeling Handbook: A Practical Approach has two major advantages over other treatments. First, it is independent of any particular simulation software, allowing readers to use any commercial package or programming language. Second, it was written to insulate practitioners from unnecessary simulation theory that does not focus on their average, practical needs. As the popularity of simulation studies continues to grow, the planning and execution of these projects, more and more engineering and management professionals will be called upon to perform these tasks. With its simple, no-nonsense approach and focus on application rather than theory, this comprehensive and easy-to-understand guide is the ideal vehicle for acquiring the background and skills needed to undertake effective simulation projects. Features Presents step-by-step procedures for conducting successful simulation modeling and analysis Addresses every phase of performing simulations, from formulating the problem to presenting study results and recommendations Uses approaches applicable regardless of the specific simulation or software used Includes a summary of the major simulation software packages and discusses the pros and cons of using general purpose programming languages
Abstract Biological vision is a rather fascinating domain of research. Scientists of various origins like biology, medicine, neurophysiology, engineering, math ematics, etc. aim to understand the processes leading to visual perception process and at reproducing such systems. Understanding the environment is most of the time done through visual perception which appears to be one of the most fundamental sensory abilities in humans and therefore a significant amount of research effort has been dedicated towards modelling and repro ducing human visual abilities. Mathematical methods play a central role in this endeavour. Introduction David Marr's theory v DEGREESas a pioneering step tov DEGREESards understanding visual percep tion. In his view human vision was based on a complete surface reconstruction of the environment that was then used to address visual subtasks. This approach was proven to be insufficient by neuro-biologists and complementary ideas from statistical pattern recognition and artificial intelligence were introduced to bet ter address the visual perception problem. In this framework visual perception is represented by a set of actions and rules connecting these actions. The emerg ing concept of active vision consists of a selective visual perception paradigm that is basically equivalent to recovering from the environment the minimal piece information required to address a particular task of interest."
This volume is designed as a 12-lecture textbook, which can serve as a course companion, self teaching guide and handbook for basic concepts. Each lecture comprises 20 pages, in which the methods are introduced, examples shown and the code is given. All examples are computed with open source software, mainly R, and with archaeological data available from the book's website. The book does not describe elaborated high-end models but rather very basic modelling concepts that serve as components in more complex models. The book enables the reader to construct such models by themselves and be sensitive for certain problems. In addition it gives hints for the interpretation of the results. Students are usually quick to apply fancy methods yet fail in the proper interpretation due to a lack of understanding of the underlying principles. This problem is addressed by the proposed book through three concepts: 1. Command line software forces the students to first learn some details before they are able to produce results on their own. 2. The book is focused on principles and methods. When the students understand a few basic principles, they have far better access to a wide range of related methods. 3. Examples of poor analysis highlight common pitfalls. The volume attempts to be an applied, minimalistic and efficient textbook and is based upon several successful courses.
Prevention of Pressure Sores: Engineering and Clinical Aspects collects together material from throughout the literature. The book first discusses the causes of pressure sores and then describes warning signs and behavior to prevent the incidence of pressure sores. It also examines the numerous different devices used to alleviate and prevent pressure sores, including various types of seat cushions, hospital beds, complex pressure relief methods, wheelchair pressure reliefs, and other preventative methods. After comparing the accuracy of various methods of measuring pressure distributions using different types of sensors, the book discusses the treatment of pressure sores. It contains a large number of references, allowing readers to refer back to the important original work in the different fields of this subject.
Conceived for both computer scientists and biologists alike, this
collection of 22 essays highlights the important new role that
computers play in developmental biology research. Essays show how
through computer modeling, researchers gain further insight into
developmental processes. Featured essays also cover their use in
designing computer algorithms to tackle computer science problems
in areas like neural network design, robot control, evolvable
hardware, and more. Peter Bentley, noted for his prolific research
on evolutionary computation, and Sanjeev Kumar head up a respected
team to guide readers through these very complex and fascinating
disciplines.
Since the early 1980s, CAD frameworks have received a great deal of attention, both in the research community and in the commercial arena. It is generally agreed that CAD framework technology promises much: advanced CAD frameworks can turn collections of individual tools into effective and user-friendly design environments. But how can this promise be fulfilled? CAD Frameworks: Principles and Architecture describes the design and construction of CAD frameworks. It presents principles for building integrated design environments and shows how a CAD framework can be based on these principles. It derives the architecture of a CAD framework in a systematic way, using well-defined primitives for representation. This architecture defines how the many different framework sub-topics, ranging from concurrency control to design flow management, relate to each other and come together into an overall system. The origin of this work is the research and development performed in the context of the Nelsis CAD Framework, which has been a working system for well over eight years, gaining functionality while evolving from one release to the next. The principles and concepts presented in this book have been field-tested in the Nelsis CAD Framework. CAD Frameworks: Principles and Architecture is primarily intended for EDA professionals, both in industry and in academia, but is also valuable outside the domain of electronic design. Many of the principles and concepts presented are also applicable to other design-oriented application domains, such as mechanical design or computer-aided software engineering (CASE). It is thus a valuable reference for all those involved in computer-aided design.
From reviews of the series:
Any study on the historical evolution of nations and countries points out the decisive importance of productivity trends. We are all very familiar with the main evolution which started with a hunting society at the dawn of civilization, then moved to an agricultural society, and quickly to craftsmanship and com merce. The beginning of the industrial society dates back to the end of the eighteenth century in England, with the introduction of the assembly line in the textile and smelting industries. However, in the last few decades, we are becoming more and more acutely aware of the paramount importance of the production of "information". Indeed, according to a few economists today, we should be classified as living in an information society which has superseded the industrial society. At this point it simply becomes necessary to talk about the computer informa tion industry, which is more and more pervading our lives, from the personal computer, to the workstation, to information networks and electronic mail, to the blueprint executed by robots, to the supercomputer necessary in any major scientific and engineering task. The computer has already brought about a momentous change in the production line - less and less man-size, more and more robot-size. But this rush to tech nical innovation has not stopped at this point. Artificial intelligence and expert systems are becoming a more and more important factor for production by many enterprises and activities.
Database technology and entity-relationship (ER) modeling have meanwhile reached the level of an established technology. This book presents the achievements of research in this field in a comprehensive survey. It deals with the entity-relationship model and its extensions with regard to an integrated development and modeling of database applications and, consequently, the specification of structures, behavior and interaction. Apart from research on the ER model and the syntax, semantics, and pragmatics of database modeling the book also presents techniques for the translation of the ER model into classical database models and languages such as relational, hierarchical, and network models and languages, and also into object-oriented models. The book is of interest for all database theoreticians as well as practitioners who are provided with the relevant foundations of database modeling.
The possibilities for creation are endless with 3D printing, sculpting, scanning, and milling, and new opportunities are popping up faster than artists can keep up with them. 3D Technology in Fine Art and Craft takes the mystery out of these exciting new processes by demonstrating how to navigate their digital components and showing their real world applications. Artists will learn to incorporate these new technologies into their studio work and see their creations come to life in a physical form never before possible. Featuring a primer on 3D basics for beginners,interviews, tutorials, and artwork from over 80 artists, intellectual property rights information, and a comprehensive companion website, this book is your field guide to exploring the exhilarating new world of 3D. Follow step-by-step photos and tutorials outlining the techniques, methodologies, and finished products of master artists who have employed 3D technology in new and inventive ways Learn how to enlarge, reduce, and repurpose existing artwork and create virtual pieces in physical forms through a variety of mediums Research your options with an accessible list of pros and cons of the various software, 3D printers, scanners, milling machines, and vendors that provide services in 3D technology Listen to podcasts with the artists and learn more tips and tricks through the book's website at www.digitalsculpting.net
* Based on the new idea of gathering state of the art topics in
Geometric Modeling together with techniques, applications, systems
and tools
This textbook presents a general multi-objective optimization framework for optimizing chemical processes by implementing a link between process simulators and metaheuristic techniques. The proposed approach is general and shows how to implement links between different process simulators such as Aspen Plus (R), HYSIS (R), Super Pro Designer (R) linked to a variety of metaheuristic techniques implemented in Matlab (R), Excel (R), C++, and others, eliminating the numerical complications through the optimization process. Furthermore, the proposed framework allows the use of thermodynamic, design and constitutive equations implemented in the process simulator to implement any process. Aimed at graduate and undergraduate students, it presents introductory chapters for process simulators and metaheuristic optimization techniques and provides several worked exercises as well as proposed exercises. In addition, accompanying tutorial videos clearly explaining the implemented methodologies are available online. Also, some Matlab (R) routines are included as electronic supporting material.
This book is designed primarily for upper level undergraduate and graduate level students taking a course in multilevel modelling and/or statistical modelling with a large multilevel modelling component. The focus is on presenting the theory and practice of major multilevel modelling techniques in a variety of contexts, using Mplus as the software tool, and demonstrating the various functions available for these analyses in Mplus, which is widely used by researchers in various fields, including most of the social sciences. In particular, Mplus offers users a wide array of tools for latent variable modelling, including for multilevel data.
Prevention of Pressure Sores: Engineering and Clinical Aspects collects together material from throughout the literature. The book first discusses the causes of pressure sores and then describes warning signs and behavior to prevent the incidence of pressure sores. It also examines the numerous different devices used to alleviate and prevent pressure sores, including various types of seat cushions, hospital beds, complex pressure relief methods, wheelchair pressure reliefs, and other preventative methods. After comparing the accuracy of various methods of measuring pressure distributions using different types of sensors, the book discusses the treatment of pressure sores. It contains a large number of references, allowing readers to refer back to the important original work in the different fields of this subject.
By focusing primarily on the application of structural equation modeling (SEM) techniques in example cases and situations, this book provides an understanding and working knowledge of advanced SEM techniques with a minimum of mathematical derivations. The book was written for a broad audience crossing many disciplines, assumes an understanding of graduate level multivariate statistics, including an introduction to SEM.
This volume focuses on the important mathematical idea of functions that, with the technology of computers and calculators, can be dynamically represented in ways that have not been possible previously. The book's editors contend that as result of recent technological developments combined with the integrated knowledge available from research on teaching, instruction, students' thinking, and assessment, curriculum developers, researchers, and teacher educators are faced with an unprecedented opportunity for making dramatic changes. The book presents content considerations that occur when the mathematics of graphs and functions relate to curriculum. It also examines content in a carefully considered integration of research that conveys where the field stands and where it might go. Drawing heavily on their own work, the chapter authors reconceptualize research in their specific areas so that this knowledge is integrated with the others' strands. This model for synthesizing research can serve as a paradigm for how research in mathematics education can -- and probably should -- proceed.
Decision makers in large scale interconnected network systems require simulation models for decision support. The behaviour of these systems is determined by many actors, situated in a dynamic, multi-actor, multi-objective and multi-level environment. How can such systems be modelled and how can the socio-technical complexity be captured? Agent-based modelling is a proven approach to handle this challenge. This book provides a practical introduction to agent-based modelling of socio-technical systems, based on a methodology that has been developed at TU Delft and which has been deployed in a large number of case studies. The book consists of two parts: the first presents the background, theory and methodology as well as practical guidelines and procedures for building models. In the second part this theory is applied to a number of case studies, where for each model the development steps are presented extensively, preparing the reader for creating own models.
Volume 9 Reviews in Computational Chemistry Kenny B. Lipkowitz and Donald B. Boyd A Select Group of Scientists from Around the World Join in this Volume to Create Unique Chapters Aimed at Both the Novice Molecular Modeler and the Expert Computational Chemist. Chapter 1 Shows how Molecular Modeling of Peptidomimetics Plays a Key Role in Drug Discovery. Specific Examples of Successful Computer-Aided Drug Design are Spelled Out. Chapter 2 is a Definitive Exposition on Thermodynamic Perturbation and Thermodynamic Integration Approaches in Molecular Dynamic Simulations. Three Chapters Elucidate Molecular Modeling of Carbohydrates, the Best Empirical Force Fields to Use in Molecular Mechanics, and Molecular Shape as a Useful Quantitative Descriptor. -From Reviews of the Series ...Very Capably Organized and Edited....Timely, Authoritative, and Well-Written....of Considerable Value to Anyone Pursuing Computational Methods. Journal of Medicinal Chemistry
A practical introduction, the second edition of Fluid Simulation for Computer Graphics shows you how to animate fully three-dimensional incompressible flow. It covers all the aspects of fluid simulation, from the mathematics and algorithms to implementation, while making revisions and updates to reflect changes in the field since the first edition. Highlights of the Second Edition New chapters on level sets and vortex methods Emphasizes hybrid particle-voxel methods, now the industry standard approach Covers the latest algorithms and techniques, including: fluid surface reconstruction from particles; accurate, viscous free surfaces for buckling, coiling, and rotating liquids; and enhanced turbulence for smoke animation Adds new discussions on meshing, particles, and vortex methods The book changes the order of topics as they appeared in the first edition to make more sense when reading the first time through. It also contains several updates by distilling author Robert Bridson's experience in the visual effects industry to highlight the most important points in fluid simulation. It gives you an understanding of how the components of fluid simulation work as well as the tools for creating your own animations.
The Key to Fully Understanding the Basics of a 3D World Prominently used in games, movies, and on television, 3D graphics are tools of creation used to enhance how material and light come together to manipulate objects in 3D space. A game-changer written for the non-technical mind, Essential Skills for 3D Modeling, Rendering, and Animation examines the complexities of 3D computer-generated art, and outlines the basics of how things work and are used in 3D. This text describes the three cornerstones of 3D-modeling, rendering, and animation; focuses on common elements; and provides a full understanding of the foundational concepts involved. Detailing the skills and knowledge needed to become an accomplished 3D artist, it includes step-by-step instruction with ample examples, and allows absolute beginners to move at their own pace. Master Anything You Are Tasked to Model The author incorporates historical information-presenting a contextual understanding of the various techniques and methodologies in their historical place. Each chapter builds on the fundamentals of 3D computer graphics and augments skills based on the concepts, enabling the student to learn both theory and application simultaneously. The book highlights two basic geometry types, polygons and NURBS surfaces, showing the student basic modeling techniques with both. While more techniques are available, an artist can cover any model by grasping these basic techniques. Supplies examples that are specifically taken from Autodesk Maya Contains exercises that are meant to be used in conjunction with the training videos on the website Includes a documented history of computer graphics Essential Skills for 3D Modeling, Rendering, and Animation offers a fundamental understanding of the mechanics of 3D graphics to modelers, animators, texture artists, render artists, game developers, and production artists, as well as educators teaching an undergrad or tech course in 3D animation.
3D Printing and Additive Manufacturing (AM) has revolutionised how prototypes are made and small batch manufacturing carried out. With additive manufacturing, the strategies used to produce a part change a number of important considerations and limitations previously faced by tool designers and engineers.This textbook is the fourth edition of Rapid Prototyping: Principles and Applications. It covers the key AM processes, the available models and specifications, and their principles, materials, advantages and disadvantages. Examples of application areas in design, planning, manufacturing, biomedical engineering, entertainment, weaponry, art and architecture are also given. The book includes several related problems for the reader to test his or her understanding of the topics. This edition comes with a companion media pack that presents animated illustrations of the working principles of today's key AM processes.
3D Printing and Additive Manufacturing (AM) has revolutionised how prototypes are made and small batch manufacturing carried out. With additive manufacturing, the strategies used to produce a part change a number of important considerations and limitations previously faced by tool designers and engineers.This textbook is the fourth edition of Rapid Prototyping: Principles and Applications. It covers the key AM processes, the available models and specifications, and their principles, materials, advantages and disadvantages. Examples of application areas in design, planning, manufacturing, biomedical engineering, entertainment, weaponry, art and architecture are also given. The book includes several related problems for the reader to test his or her understanding of the topics. This edition comes with a companion media pack that presents animated illustrations of the working principles of today's key AM processes. |
![]() ![]() You may like...
Speak - Love Your Story, Your Audience…
Sally Lou Oaks Loveman
Paperback
Data Science and Internet of Things…
Giancarlo Fortino, Antonio Liotta, …
Hardcover
R4,234
Discovery Miles 42 340
Parallel Computing in Optimization
A. Migdalas, Panos M. Pardalos, …
Hardcover
R8,638
Discovery Miles 86 380
New Approaches for Multidimensional…
Roumen Kountchev, Rumen Mironov, …
Hardcover
R6,342
Discovery Miles 63 420
Multimedia Data Mining and Analytics…
Aaron K Baughman, Jiang Gao, …
Hardcover
Usability Testing for Survey Research
Emily Geisen, Jennifer Romano Bergstrom
Paperback
Sustainable Composites for Aerospace…
Mohammad Jawaid, Mohamed Thariq
Paperback
Cases on Modern Computer Systems in…
Tetiana Shmelova, Yuliya Sikirda, …
Hardcover
R6,043
Discovery Miles 60 430
|