![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Computer software packages > Computer graphics software
Learning a 3D visualization software is a daunting task under any circumstances and while it may be easy to find online tutorials that tell you what to do to perform certain tasks you'll seldom learn "why" you are performing the steps. This book approaches training from a top-down perspective way you will first learn important concepts of 3D visualization and functionality of 3ds Max before moving into the finer detail of the command structure. By learning how things work and why you might choose one method over another the book will not only teach you where the buttons are, but more importantly how to think about the holistic process of 3D design so that you can then apply the lessons to your own needs. The goal of the learning presented here is to familiarize the new user of 3ds Max with a typical workflow from a production environment from planning to modeling, materials, and lighting, and then applying special effects and compositing techniques for a finished product.
The book helps readers develop fundamental skills in the field of biomedical illustrations with a training approach based on step-by-step tutorials with a practical approach. Medical/scientific illustration mainly belongs to professionals in the art field or scientists trying to create artistic visualization. There is not a merging between the two, even if the demand is high. This leads to accurate scientific images with no appeal (or trivial mistakes), or appealing CSI-like images with huge scientific mistakes. This gives the fundamentals to the scientist so they can apply CG techniques that give a more scientific approach creating mistake-free images. Key Features This book provides a reference where none exist. Without overwhelming the reader with software details it teaches basic principles to give readers to fundamentals to create. Demonstrates professional artistic tools used by scientists to create better images for their work. Coverage of lighting and rendering geared specifically for scientific work that is toturoal based with a practical approach. Included are chapter tutorials, key terms and end of chapter references for Art and Scientific References for each chapter.
The "Concise Encyclopedia of Modelling & Simulation" contains
172 alphabetically arranged articles describing the modelling and
simulation of physical systems. The emphasis is on mathematical
models and their various forms, although other types of models,
such as knowledge-based, linguistics-based, graphical and
data-based, are also discussed. The articles are revised from the
"Systems & Control Encyclopedia," and many newly commissioned
articles are included describing recent developments in the field.
Articles on identification cover all aspects of this problem, from
the use and choice of specific test signals to problems of model
order and the many algorithms and approaches to parameter
estimation. Computational techniques, such as the finite-element
method, that play an important role in analyzing nonlinear models
are covered. Articles outline the development of simulation,
consider currently available simulation languages, describe
applications and cover current developments in the area. Where
appropriate, illustrations and tables are included to clarify
particular topics. This encyclopedia will be a valuable reference
source for all practising engineers, researchers and postgraduate
students in the field of modelling and simulation.
The enormous advances in computational hardware and software resources over the last fifteen years resulted in the development of non-conventional data processing and simulation methods. Among these methods artificial intelligence (AI) has been mentioned as one of the most eminent approaches to the so-called intelligent methods of information processing that present a great potential for engineering applications. ""Intelligent Computational Paradigms in Earthquake Engineering"" contains contributions that cover a wide spectrum of very important real-world engineering problems, and explore the implementation of neural networks for the representation of structural responses in earthquake engineering. This book assesses the efficiency of seismic design procedures and describes the latest findings in intelligent optimal control systems and their applications in structural engineering. ""Intelligent Computational Paradigms in Earthquake Engineering"" presents the application of learning machines, artificial neural networks and support vector machines as highly-efficient pattern recognition tools for structural damage detection. It includes an AI-based evaluation of bridge structures using life-cycle cost principles that considers seismic risk, and emphasizes the use of AI methodologies in a geotechnical earthquake engineering application.
Due to limited publicly available software and lack of documentation, those involved with production volume rendering often have to start from scratch creating the necessary elements to make their system work. Production Volume Rendering: Design and Implementation provides the first full account of volume rendering techniques used for feature animation and visual effects production. It covers the theoretical underpinnings as well as the implementation of a working renderer. The book offers two paths toward understanding production volume rendering. It describes: Modern production volume rendering techniques in a generic context, explaining how the techniques fit together and how the modules are used to achieve real-world goals Implementation of the techniques, showing how to translate abstract concepts into concrete, working code and how the ideas work together to create a complete system As an introduction to the field and an overview of current techniques and algorithms, this book is a valuable source of information for programmers, technical directors, artists, and anyone else interested in how production volume rendering works. Web ResourceThe scripts, data, and source code for the book's renderer are freely available at https://github.com/pvrbook/pvr. Readers can see how the code is implemented and acquire a practical understanding of how various design considerations impact scalability, extensibility, generality, and performance.
Geologists must be able to "read" a geological map. That means interpreting the vertical dimension through the 2D view represented on the map and at different scales. The main objective of this book is to help students during this difficult learning process. Based on an abundant iconography (field photos, maps, cross-sections) and on basics in mathematics and mechanics, the book dissects the geometry of emblematic geological structures and objects in order to build 3 D models, printable in 3D. The book is dedicated to structural geology with a particular emphasis on kinematics of faulting and folding and on salt tectonics (chapters III, IV and V). The origin of continental great unconformities and oceanic break-up unconformities is also discussed (chapter II). The audience of the book is broad and includes (under)graduate students in Earth Sciences, professors of Natural Sciences, and professional or amateur geologists.
Geologists must be able to "read" a geological map. That means interpreting the vertical dimension through the 2D view represented on the map and at different scales. The main objective of this book is to help students during this difficult learning process. Based on an abundant iconography (field photos, maps, cross-sections) and on basics in mathematics and mechanics, the book dissects the geometry of emblematic geological structures and objects in order to build 3 D models, printable in 3D. The book is dedicated to structural geology with a particular emphasis on kinematics of faulting and folding and on salt tectonics (chapters III, IV and V). The origin of continental great unconformities and oceanic break-up unconformities is also discussed (chapter II). The audience of the book is broad and includes (under)graduate students in Earth Sciences, professors of Natural Sciences, and professional or amateur geologists.
This volume continues previous DLES proceedings books, presenting modern developments in turbulent flow research. It is comprehensive in its coverage of numerical and modeling techniques for fluid mechanics. After Surrey in 1994, Grenoble in 1996, Cambridge in 1999, Enschede in 2001, Munich in 2003, Poitiers in 2005, and Trieste in 2009, the 8th workshop, DLES8, was held in Eindhoven, The Netherlands, again under the auspices of ERCOFTAC. Following the spirit of the series, the goal of thisworkshopis to establish a state-of-the-art of DNS and LES techniques for the computation and modeling of transitional/turbulent flows covering a broad scope of topics such as aerodynamics, acoustics, combustion, multiphase flows, environment, geophysics and bio-medical applications. This gathering of specialists in the field was a unique opportunity for discussions about the more recent advances in the prediction, understanding and control of turbulent flows in academic or industrial situations. "
The networking capabilities of the Java platform have been extended
considerably since the first edition of the book. This new edition
covers version 1.5-1.7, the most current iterations, as well as
making the following improvements:
The use of new media in the service of cultural heritage is a fast growing field, known variously as virtual or digital heritage. New Heritage, under this denomination, broadens the definition of the field to address the complexity of cultural heritage such as the related social, political and economic issues. This book is a collection of 20 key essays, of authors from 11 countries, representing a wide range of professions including architecture, philosophy, history, cultural heritage management, new media, museology and computer science, which examine the application of new media to cultural heritage from a different points of view. Issues surrounding heritage interpretation to the public and the attempts to capture the essence of both tangible (buildings, monuments) and intangible (customs, rituals) cultural heritage are investigated in a series of innovative case studies.
Developments in Geographic Information Technology have raised the expectations of users. A static map is no longer enough; there is now demand for a dynamic representation. Time is of great importance when operating on real world geographical phenomena, especially when these are dynamic. Researchers in the field of Temporal Geographical Information Systems (TGIS) have been developing methods of incorporating time into geographical information systems. Spatio-temporal analysis embodies spatial modelling, spatio-temporal modelling and spatial reasoning and data mining. Advances in Spatio-Temporal Analysis contributes to the field of spatio-temporal analysis, presenting innovative ideas and examples that reflect current progress and achievements.
This book generalizes fuzzy logic systems for different types of uncertainty, including - semantic ambiguity resulting from limited perception or lack of knowledge about exact membership functions - lack of attributes or granularity arising from discretization of real data - imprecise description of membership functions - vagueness perceived as fuzzification of conditional attributes. Consequently, the membership uncertainty can be modeled by combining methods of conventional and type-2 fuzzy logic, rough set theory and possibility theory. In particular, this book provides a number of formulae for implementing the operation extended on fuzzy-valued fuzzy sets and presents some basic structures of generalized uncertain fuzzy logic systems, as well as introduces several of methods to generate fuzzy membership uncertainty. It is desirable as a reference book for under-graduates in higher education, master and doctor graduates in the courses of computer science, computational intelligence, or fuzzy control and classification, and is especially dedicated to researchers and practitioners in industry.
Computer simulations based on mathematical models have become ubiquitous across the engineering disciplines and throughout the physical sciences. Successful use of a simulation model, however, requires careful interrogation of the model through systematic computer experiments. While specific theoretical/mathematical examinations of computer experiment design are available, those interested in applying proposed methodologies need a practical presentation and straightforward guidance on analyzing and interpreting experiment results. Written by authors with strong academic reputations and real-world practical experience, Design and Modeling for Computer Experiments is exactly the kind of treatment you need. The authors blend a sound, modern statistical approach with extensive engineering applications and clearly delineate the steps required to successfully model a problem and provide an analysis that will help find the solution. Part I introduces the design and modeling of computer experiments and the basic concepts used throughout the book. Part II focuses on the design of computer experiments. The authors present the most popular space-filling designs - like Latin hypercube sampling and its modifications and uniform design - including their definitions, properties, construction and related generating algorithms. Part III discusses the modeling of data from computer experiments. Here the authors present various modeling techniques and discuss model interpretation, including sensitivity analysis. An appendix reviews the statistics and mathematics concepts needed, and numerous examples clarify the techniques and their implementation. The complexity of real physical systems means that there is usually no simple analytic formula that sufficiently describes the phenomena. Useful both as a textbook and professional reference, this book presents the techniques you need to design and model computer experiments for practical problem solving.
"Provides a lot of reading pleasure and many new insights." —Journal of Molecular Structure "This is the most entertaining, stimulating and useful book which can be thoroughly recommended to anyone with an interest in computer simulation." —Contemporary Physics "A very useful introduction . . . more interesting to read than the often dry equation-based texts." —Journal of the American Chemical Society Written especially for the novice, Molecular Dynamics Simulation demonstrates how molecular dynamics simulations work and how to perform them, focusing on how to devise a model for specific molecules and then how to simulate their movements using a computer. This book provides a collection of methods that until now have been scattered through the literature of the last 25 years. It reviews elements of sampling theory and discusses how modern notions of chaos and nonlinear dynamics explain the workings of molecular dynamics. Stresses easy-to-use molecules
Computer simulations based on mathematical models have become ubiquitous across the engineering disciplines and throughout the physical sciences. Successful use of a simulation model, however, requires careful interrogation of the model through systematic computer experiments. While specific theoretical/mathematical examinations of computer experiment design are available, those interested in applying proposed methodologies need a practical presentation and straightforward guidance on analyzing and interpreting experiment results. Written by authors with strong academic reputations and real-world practical experience, Design and Modeling for Computer Experiments is exactly the kind of treatment you need. The authors blend a sound, modern statistical approach with extensive engineering applications and clearly delineate the steps required to successfully model a problem and provide an analysis that will help find the solution. Part I introduces the design and modeling of computer experiments and the basic concepts used throughout the book. Part II focuses on the design of computer experiments. The authors present the most popular space-filling designs - like Latin hypercube sampling and its modifications and uniform design - including their definitions, properties, construction and related generating algorithms. Part III discusses the modeling of data from computer experiments. Here the authors present various modeling techniques and discuss model interpretation, including sensitivity analysis. An appendix reviews the statistics and mathematics concepts needed, and numerous examples clarify the techniques and their implementation. The complexity of real physical systems means that thereis usually no simple analytic formula that sufficiently describes the phenomena. Useful both as a textbook and professional reference, this book presents the techniques you need to design and model computer experiments for practical problem solving.
This is the first book to revisit geotechnical site characterization from a probabilistic point of view and provide rational tools to probabilistically characterize geotechnical properties and underground stratigraphy using limited information obtained from a specific site. This book not only provides new probabilistic approaches for geotechnical site characterization and slope stability analysis, but also tackles the difficulties in practical implementation of these approaches. In addition, this book also develops efficient Monte Carlo simulation approaches for slope stability analysis and implements these approaches in a commonly available spreadsheet environment. These approaches and the software package are readily available to geotechnical practitioners and alleviate them from reliability computational algorithms. The readers will find useful information for a non-specialist to determine project-specific statistics of geotechnical properties and to perform probabilistic analysis of slope stability.
A state-of-the-art guide for the implementation of distributed simulation technology.
This innovative text emphasizes a "less-is-more" approach to modeling complicated systems such as heat transfer by treating them first as "1-node lumped models" that yield simple closed-form solutions. The author develops numerical techniques for students to obtain more detail, but also trains them to use the techniques only when simpler approaches fail. Covering all essential methods offered in traditional texts, but with a different order, Professor Sidebotham stresses inductive thinking and problem solving as well as a constructive understanding of modern, computer-based practice. Readers learn to develop their own code in the context of the material, rather than just how to use packaged software, offering a deeper, intrinsic grasp behind models of heat transfer. Developed from over twenty-five years of lecture notes to teach students of mechanical and chemical engineering at The Cooper Union for the Advancement of Science and Art, the book is ideal for students and practitioners across engineering disciplines seeking a solid understanding of heat transfer. This book also: * Adopts a novel inductive pedagogy where commonly understood examples are introduced early and theory is developed to explain and predict readily recognized phenomena * Introduces new techniques as needed to address specific problems, in contrast to traditional texts' use of a deductive approach, where abstract general principles lead to specific examples * Elucidates readers' understanding of the "heat transfer takes time" idea-transient analysis applications are introduced first and steady-state methods are shown to be a limiting case of those applications * Focuses on basic numerical methods rather than analytical methods of solving partial differential equations, largely obsolete in light of modern computer power * Maximizes readers' insights to heat transfer modeling by framing theory as an engineering design tool, not as a pure science, as has been done in traditional textbooks * Integrates practical use of spreadsheets for calculations and provides many tips for their use throughout the text examples
The Computer Science and Engineering Handbook characterizes the current state of theory and practice in the field. In this single volume you can find quick answers to the questions that affect your work every day. More than 110 chapters describe fundamental principles, "best practices," research horizons, and their impact upon the professions and society. Glossaries of key terms, references, and sources for further information, including key Web sites, provide you with the most complete information on every topic.
Start animating right away with this tutorial-based guide to Autodesk 3ds Max 2016 Autodesk 3ds Max 2016 Essentials is your perfect hands-on guide to start animating quickly. Using approachable, real-world exercises, you'll master the fundamentals of this leading animation software by following full-color screen shots step by step. Each chapter opens with a quick discussion of concepts and learning objectives, and then launches into hands-on tutorials that give you firsthand experience and a good start on preparing for the 3ds Max certification exam. You'll learn the basics of modeling, texturing, animating, and visual effects as you create a retro-style alarm clock, animate a thrown knife, model a chair, and more. Whether you're a complete beginner or migrating from another 3D application, this task-based book provides the solid grounding you need in Autodesk 3ds Max 2016. * Model your character with polygons, meshes, and more * Add motion with simple and complex animations * Add color and textures to visualize materials and surfaces * Render interior scenes with great lighting and camera placement If you want to learn 3ds Max quickly and painlessly, Autodesk 3ds Max 2016 Essentials helps you start animating today.
With the advent of sophisticated general programming environments like Mathematica, the task of developing new models of metabolism and visualizing their responses has become accessible to students of biochemistry and the life sciences in general. Modelling Metabolism with Mathematica presents the approaches, methods, tools, and algorithms for modelling the chemical-dynamics of metabolic pathways. The authors explain the concepts underpinning the deterministic theory of chemical and enzyme kinetics, present a graded series of computer models of metabolic pathways leading up to that of the human erythrocyte, and document a consistent set of rate equations and associated kinetic parameters.
Learn how to use, deploy, and maintain Apache Spark with this comprehensive guide, written by the creators of the open-source cluster-computing framework. With an emphasis on improvements and new features in Spark 2.0, authors Bill Chambers and Matei Zaharia break down Spark topics into distinct sections, each with unique goals. You'll explore the basic operations and common functions of Spark's structured APIs, as well as Structured Streaming, a new high-level API for building end-to-end streaming applications. Developers and system administrators will learn the fundamentals of monitoring, tuning, and debugging Spark, and explore machine learning techniques and scenarios for employing MLlib, Spark's scalable machine-learning library. Get a gentle overview of big data and Spark Learn about DataFrames, SQL, and Datasets-Spark's core APIs-through worked examples Dive into Spark's low-level APIs, RDDs, and execution of SQL and DataFrames Understand how Spark runs on a cluster Debug, monitor, and tune Spark clusters and applications Learn the power of Structured Streaming, Spark's stream-processing engine Learn how you can apply MLlib to a variety of problems, including classification or recommendation
Simulation is the art of using tools - physical or conceptual models, or computer hardware and software, to attempt to create the illusion of reality. The discipline has in recent years expanded to include the modelling of systems that rely on human factors and therefore possess a large proportion of uncertainty, such as social, economic or commercial systems. These new applications make the discipline of modelling and simulation a field of dynamic growth and new research. Stanislaw Raczynski outlines the considerable and promising research that is being conducted to counter the problems of uncertainty surrounding the methods used to approach these new applications. It aims to stimulate the reader into seeking out new tools for modelling and simulation. Examines the state-of-the-art in recent research into methods of approaching new applications in the field of modelling and simulation Provides an introduction to new modelling tools such as differential inclusions, metric structures in the space of models, semi-discrete events, and use of simulation in parallel optimization techniques Discusses recently developed practical applications: for example the PASION simulation system, stock market simulation, a new fluid dynamics tool, manufacturing simulation and the simulation of social structures Illustrated throughout with a series of case studies "Modelling and Simulation: The Computer Science of Illusion" will appeal to academics, postgraduate students, researchers and practitioners in the modelling and simulation of industrial computer systems. It will also be of interest to those using simulation as an auxiliary tool.
New to CINEMA 4D and looking for an accessible way to get up to speed quickly? Do you already know the basics of the software but need to know the new features or take your skills and understanding a little deeper? If so, look no further than CINEMA 4D Apprentice, your one-stop shop for learning this powerful application. With guidance that takes you beyond just the button-pushing, author Kent McQuilkin guides you through 10 core lessons, starting with the basics before moving onto more complex techniques and concepts and then tying it all together with a final project. CINEMA 4D Apprentice walks you through the software with a project-based approach, allowing you to put lessons learned into immediate practice. Best practices and workflows for motion graphics artists that can be applied to any software application are included. A companion website (www.focalpress.com/cw/mcquilkin) features project files and videos of the techniques in action. Topics covered include: creating basic scenes, modeling, texture mapping mograph in-depth integration with After Effects via CINEWARE lighting, animation, rendering and more motion tracking with the new tools included in R16
The understanding and control of transport phenomena in materials processing play an important role in the improvement of conventional processes and in the development of new techniques. Computer modeling of these phenomena can be used effectively for this purpose. Although there are several books in the literature covering the analysis of heat transfer and fluid flow, Computer Modelling of Heat and Fluid Flow in Materials Processing specifically addresses the understanding of these phenomena in materials processing situations. Written at a level suitable for graduate students in materials science and engineering and subjects, this book is ideal for those wishing to learn how to approach computer modeling of transport phenomena and apply these techniques in materials processing. The text includes a number of relevant case studies and each chapter is supported by numerous examples of transport modeling programs. |
![]() ![]() You may like...
Digital Manufacturing - The…
Chandrakant D. Patel, Chun-Hsien Chen
Paperback
R4,854
Discovery Miles 48 540
Simulation and Modeling - Current…
Asim El Sheikh, Abid Thyab Al Ajeeli, …
Hardcover
R2,875
Discovery Miles 28 750
Innovative Healthcare Systems for the…
Hassan Qudrat-Ullah, Peter Tsasis
Hardcover
R4,369
Discovery Miles 43 690
Agent-Based Models and Complexity…
Liliana Perez, Eun-Kyeong Kim, …
Hardcover
R4,348
Discovery Miles 43 480
Digital Image and Video Watermarking and…
Sudhakar Ramakrishnan
Hardcover
R2,763
Discovery Miles 27 630
|