![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Computer hardware & operating systems
This book explains for readers how 3D chip stacks promise to increase the level of on-chip integration, and to design new heterogeneous semiconductor devices that combine chips of different integration technologies (incl. sensors) in a single package of the smallest possible size. The authors focus on heterogeneous 3D integration, addressing some of the most important challenges in this emerging technology, including contactless, optics-based, and carbon-nanotube-based 3D integration, as well as signal-integrity and thermal management issues in copper-based 3D integration. Coverage also includes the 3D heterogeneous integration of power sources, photonic devices, and non-volatile memories based on new materials systems.
Time-tested advice on Windows 10 Windows 10 For Dummies remains the #1 source for readers looking for advice on Windows 10. Expert author Andy Rathbone provides an easy-to-follow guidebook to understanding Windows 10 and getting things done based on his decades of experience as a Windows guru. Look inside to get a feel for the basics of the Windows interface, the Windows apps that help you get things done, ways to connect to the Internet at home or on the go, and steps for customizing your Windows 10 experience from the desktop wallpaper to how tightly you secure your computer. - Manage user accounts - Customize the start menu - Find and manage your files - Connect to a printer wirelessly Revised to cover the latest round of Windows 10 updates, this trusted source for unleashing everything the operating system has to offer is your first and last stop for learning the basics of Windows!
The development of computer technology, particularly the work of the Fifth Generation Computer Project of Japan, will have far-reaching international implications. The author explores the uses of the new generation computer and information systems now under development in Japan by identifying their application, assessing their impact on society, and envisioning the transition to the future.
This book introduces readers to the most advanced research results on Design for Manufacturability (DFM) with multiple patterning lithography (MPL) and electron beam lithography (EBL). The authors describe in detail a set of algorithms/methodologies to resolve issues in modern design for manufacturability problems with advanced lithography. Unlike books that discuss DFM from the product level or physical manufacturing level, this book describes DFM solutions from a circuit design level, such that most of the critical problems can be formulated and solved through combinatorial algorithms.
This book presents the latest developments regarding a detailed mobile agent-enabled anomaly detection and verification system for resource constrained sensor networks; a number of algorithms on multi-aspect anomaly detection in sensor networks; several algorithms on mobile agent transmission optimization in resource constrained sensor networks; an algorithm on mobile agent-enabled in situ verification of anomalous sensor nodes; a detailed Petri Net-based formal modeling and analysis of the proposed system, and an algorithm on fuzzy logic-based cross-layer anomaly detection and mobile agent transmission optimization. As such, it offers a comprehensive text for interested readers from academia and industry alike.
"Focuses broadly on those aspects of the UNIX environment that are needed to provide a more global understanding, especially in its dealing with distributed and networked systems, in a very practical and hands-on manner." -- IEEE Network Magazine
Digital Hardware Testing presents realistic transistor-level fault models and testing methods for all types of circuits. The discussion details design-for-testability and built-in self-test methods, with coverage of boundary scan and emerging technologies such as partial scan, cross check, and circular self-test-path.
This book describes the state-of-the art of industrial and academic research in the architectural design of heterogeneous, multi/many-core processors. The authors describe methods and tools to enable next-generation embedded and high-performance heterogeneous processors to confront cost-effectively the inevitable variations by providing Dependable-Performance: correct functionality and timing guarantees throughout the expected lifetime of a platform under thermal, power, and energy constraints. Various aspects of the reliability problem are discussed, at both the circuit and architecture level, the intelligent selection of knobs and monitors in multicore platforms, and systematic design methodologies. The authors demonstrate how new techniques have been applied in real case studies from different applications domain and report on results and conclusions of those experiments. Enables readers to develop performance-dependable heterogeneous multi/many-core architectures Describes system software designs that support high performance dependability requirements Discusses and analyzes low level methodologies to tradeoff conflicting metrics, i.e. power, performance, reliability and thermal management Includes new application design guidelines to improve performance dependability
This book introduces state-of-the-art verification techniques for real-time embedded systems, based on the inverse method for parametric timed automata. It reviews popular formalisms for the specification and verification of timed concurrent systems and, in particular, timed automata as well as several extensions such as timed automata equipped with stopwatches, linear hybrid automata and affine hybrid automata.The inverse method is introduced, and its benefits for guaranteeing robustness in real-time systems are shown. Then, it is shown how an iteration of the inverse method can solve the good parameters problem for parametric timed automata by computing a behavioral cartography of the system. Different extensions are proposed particularly for hybrid systems and applications to scheduling problems using timed automata with stopwatches. Various examples, both from the literature and industry, illustrate the techniques throughout the book.Various parametric verifications are performed, in particular of abstractions of a memory circuit sold by the chipset manufacturer ST-Microelectronics, as well as of the prospective flight control system of the next generation of spacecraft designed by ASTRIUM Space Transportation. Contents: 1. Parametric Timed Automata.2. The Inverse Method for Parametric Timed Automata.3. The Inverse Method in Practice: Application to Case Studies.4. Behavioral Cartography of Timed Automata.5. Parameter Synthesis for Hybrid Automata.6. Application to the Robustness Analysis of Scheduling Problems.7. Conclusion and Perspectives. About the Authors etienne Andre is Associate Professor in the Laboratoire d'Informatique de Paris Nord, in the University of Paris 13 (Sorbonne Paris Cite) in France. His current research interests focus on the verification of real-time systems.Romain Soulat is currently completing his PhD at the LSV laboratory at ENS-Cachan in France, focusing on the modeling and verification of hybrid temporal systems.
This two-volume set focuses on fundamental concepts and design goals (i.e., a switch/router's key features), architectures, and practical applications of switch/routers in IP networks. The discussion includes practical design examples to illustrate how switch/routers are designed and how the key features are implemented. Designing Switch/Routers: Fundamental Concepts, Design Methods, Architectures, and Applications begins by providing an introductory level discussion that covers the functions and architectures of the switch/router. The first book considers the switch/router as a generic Layer 2 and Layer 3 forwarding device without placing emphasis on any particular manufacturer's device. The underlining concepts and design methods are not only positioned to be applicable to this generic switch/router, but also to the typical switch/router seen in the industry. The discussion provides a better insight into the protocols, methods, processes, and tools that go into designing switch/routers. The second volume explains the design and architectural considerations, as well as, the typical processes and steps used to build practical switch/routers. It then discusses the advantages of using Ethernet in today's networks and why Ethernet continues to play a bigger role in Local Area Network (LAN), Metropolitan Area Network (MAN), and Wide Area Network (WAN) design. This book set provides a discussion of the design of switch/routers and is written in a style to appeal to undergraduate and graduate-level students, engineers, and researchers in the networking and telecoms industry, as well as academics and other industry professionals. The material and discussion are structured in such a way that they could serve as standalone teaching material for networking and telecom courses and/or supplementary material for such courses.
This two-volume set focuses on fundamental concepts and design goals (i.e., a switch/router's key features), architectures, and practical applications of switch/routers in IP networks. The discussion includes practical design examples to illustrate how switch/routers are designed and how the key features are implemented. Designing Switch/Routers: Fundamental Concepts, Design Methods, Architectures, and Applications begins by providing an introductory level discussion that covers the functions and architectures of the switch/router. The first book considers the switch/router as a generic Layer 2 and Layer 3 forwarding device without placing emphasis on any particular manufacturer's device. The underlining concepts and design methods are not only positioned to be applicable to this generic switch/router, but also to the typical switch/router seen in the industry. The discussion provides a better insight into the protocols, methods, processes, and tools that go into designing switch/routers. The second volume explains the design and architectural considerations, as well as, the typical processes and steps used to build practical switch/routers. It then discusses the advantages of using Ethernet in today's networks and why Ethernet continues to play a bigger role in Local Area Network (LAN), Metropolitan Area Network (MAN), and Wide Area Network (WAN) design. This book set provides a discussion of the design of switch/routers and is written in a style to appeal to undergraduate and graduate-level students, engineers, and researchers in the networking and telecoms industry, as well as academics and other industry professionals. The material and discussion are structured in such a way that they could serve as standalone teaching material for networking and telecom courses and/or supplementary material for such courses.
This book analyzes energy and reliability as major challenges faced by designers of computing frameworks in the nanometer technology regime. The authors describe the existing solutions to address these challenges and then reveal a new reconfigurable computing platform, which leverages high-density nanoscale memory for both data storage and computation to maximize the energy-efficiency and reliability. The energy and reliability benefits of this new paradigm are illustrated and the design challenges are discussed. Various hardware and software aspects of this exciting computing paradigm are described, particularly with respect to hardware-software co-designed frameworks, where the hardware unit can be reconfigured to mimic diverse application behavior. Finally, the energy-efficiency of the paradigm described is compared with other, well-known reconfigurable computing platforms.
This book puts the spotlight on how a real-time kernel works. Using Micrium's C/OS-III as a reference, the book consists of two complete parts. The first describes real-time kernels in generic terms. Part II provides examples to the reader, using STMicroelectronics' STM32F107 microcontroller, based on the popular ARM Cortex-M3 architecture. A companion evaluation board ***NOT INCLUDED, but available through Micrium*** ( C/Eval-STM32F107), and tools (IAR Systems Embedded Workbench for ARM), enable the reader to be up and running quickly, and have an amazing hands-on experience, leading to a high level of proficiency. This book is written for serious embedded systems programmers, consultants, hobbyists, and students interested in understanding the inner workings of a real-time kernel. C/OS-III is not just a great learning platform, but also a full commercial-grade software package, ready to be part of a wide range of products. C/OS-III is a highly portable, ROMable, scalable, preemptive real-time, multitasking kernel designed specifically to address the demanding requirements of today's embedded systems. C/OS-III is the successor to the highly popular C/OS-II real-time kernel but can use most of C/OS-II's ports with minor modifications. Some of the features of C/OS-III are: Preemptive multitasking with round-robin scheduling of tasks at the same priority Supports an unlimited number of tasks and other kernel objects Rich set of services: semaphores, mutual exclusion semaphores with full priority inheritance, event flags, message queues, timers, fixed-size memory block management, and more Built-in performance measurements About the Author Jean Labrosse founded Micrium in 1999. He is a regular speaker at the Embedded Systems Conference in Boston and Silicon Valley, and other industry conferences. Author of two definitive books on embedded design: MicroC/OS-II, The Real-Time Kernel and Embedded Systems Building Blocks, Complete and Ready-to-Use Modules in C, he holds BSEE and MSEE from the University of Sherbrooke, Quebec, Canada.
This book opens the door to a new interesting and ambitious world of reversible and quantum computing research. It presents the state of the art required to travel around that world safely. Top world universities, companies and government institutions are in a race of developing new methodologies, algorithms and circuits on reversible logic, quantum logic, reversible and quantum computing and nano-technologies. In this book, twelve reversible logic synthesis methodologies are presented for the first time in a single literature with some new proposals. Also, the sequential reversible logic circuitries are discussed for the first time in a book. Reversible logic plays an important role in quantum computing. Any progress in the domain of reversible logic can be directly applied to quantum logic. One of the goals of this book is to show the application of reversible logic in quantum computing. A new implementation of wavelet and multiwavelet transforms using quantum computing is performed for this purpose. Researchers in academia or industry and graduate students, who work in logic synthesis, quantum computing, nano-technology, and low power VLSI circuit design, will be interested in this book.
This book provides a comprehensive introduction to spintronics-based computing for the next generation of ultra-low power/highly reliable logic. It will cover aspects from device to system-level, including magnetic memory cells, device modeling, hybrid circuit structure, design methodology, CAD tools, and technological integration methods. This book is accessible to a variety of readers and little or no background in magnetism and spin electronics are required to understand its content. The multidisciplinary team of expert authors from circuits, devices, computer architecture, CAD and system design reveal to readers the potential of spintronics nanodevices to reduce power consumption, improve reliability and enable new functionality.
This book provides techniques to tackle the design challenges raised by the increasing diversity and complexity of emerging, heterogeneous architectures for embedded systems. It describes an approach based on techniques from software engineering called aspect-oriented programming, which allow designers to control today's sophisticated design tool chains, while maintaining a single application source code. Readers are introduced to the basic concepts of an aspect-oriented, domain specific language that enables control of a wide range of compilation and synthesis tools in the partitioning and mapping of an application to a heterogeneous (and possibly multi-core) target architecture. Several examples are presented that illustrate the benefits of the approach developed for applications from avionics and digital signal processing. Using the aspect-oriented programming techniques presented in this book, developers can reuse extensive sections of their designs, while preserving the original application source-code, thus promoting developer productivity as well as architecture and performance portability. Describes an aspect-oriented approach for the compilation and synthesis of applications targeting heterogeneous embedded computing architectures. Includes examples using an integrated tool chain for compilation and synthesis. Provides validation and evaluation for targeted reconfigurable heterogeneous architectures. Enables design portability, given changing target devices* Allows developers to maintain a single application source code when targeting multiple architectures.
The aim of this book is to explain to high-performance computing (HPC) developers how to utilize the Intel(r) Xeon Phi series products efficiently. To that end, it introduces some computing grammar, programming technology and optimization methods for using many-integrated-core (MIC) platforms and also offers tips and tricks for actual use, based on the authors first-hand optimization experience. The material is organized in three sections. The first section, Basics of MIC, introduces the fundamentals of MIC architecture and programming, including the specific Intel MIC programming environment. Next, the section on Performance Optimization explains general MIC optimization techniques, which are then illustrated step-by-step using the classical parallel programming example of matrix multiplication. Finally, Project development presents a set of practical and experience-driven methods for using parallel computing in application projects, including how to determine if a serial or parallel CPU program is suitable for MIC and how to transplant a program onto MIC. This book appeals to two main audiences: First, software developers for HPC applications it will enable them to fully exploit the MIC architecture and thus achieve the extreme performance usually required in biological genetics, medical imaging, aerospace, meteorology and other areas of HPC. Second, students and researchers engaged in parallel and high-performance computing it will guide them on how to push the limits of system performance for HPC applications. "
This book questions the relevance of computation to the physical universe. Our theories deliver computational descriptions, but the gaps and discontinuities in our grasp suggest a need for continued discourse between researchers from different disciplines, and this book is unique in its focus on the mathematical theory of incomputability and its relevance for the real world. The core of the book consists of thirteen chapters in five parts on extended models of computation; the search for natural examples of incomputable objects; mind, matter, and computation; the nature of information, complexity, and randomness; and the mathematics of emergence and morphogenesis. This book will be of interest to researchers in the areas of theoretical computer science, mathematical logic, and philosophy.
This book collects multiple research articles studying the factors influencing wearable device usage. Based on multiple empirical studies, which research different kinds of wearable devices such as smartwatches, activity trackers, and smartglasses, potential drivers of wearable device usage are identified and evaluated. Overall, the book provides novel and important insights for both practitioners and academics, highlights their various practical implications for the development and marketing of wearable devices and offers outlooks on further research directions. |
You may like...
Integrated Population Biology and…
Arni S.R. Srinivasa Rao, C.R. Rao
Hardcover
R4,853
Discovery Miles 48 530
Computational and Statistical Methods…
Shen Liu, James McGree, …
Hardcover
R1,802
Discovery Miles 18 020
Flexible Bayesian Regression Modelling
Yanan Fan, David Nott, …
Paperback
R2,427
Discovery Miles 24 270
Advances in Time Series Analysis and…
Ignacio Rojas, Hector Pomares, …
Hardcover
R2,718
Discovery Miles 27 180
|