![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Computer hardware & operating systems
This book describes the state-of-the art of industrial and academic research in the architectural design of heterogeneous, multi/many-core processors. The authors describe methods and tools to enable next-generation embedded and high-performance heterogeneous processors to confront cost-effectively the inevitable variations by providing Dependable-Performance: correct functionality and timing guarantees throughout the expected lifetime of a platform under thermal, power, and energy constraints. Various aspects of the reliability problem are discussed, at both the circuit and architecture level, the intelligent selection of knobs and monitors in multicore platforms, and systematic design methodologies. The authors demonstrate how new techniques have been applied in real case studies from different applications domain and report on results and conclusions of those experiments. Enables readers to develop performance-dependable heterogeneous multi/many-core architectures Describes system software designs that support high performance dependability requirements Discusses and analyzes low level methodologies to tradeoff conflicting metrics, i.e. power, performance, reliability and thermal management Includes new application design guidelines to improve performance dependability
PIC32 Microcontrollers and the Digilent chipKIT: Introductory to Advanced Projects will teach you about the architecture of 32-bit processors and the hardware details of the chipKIT development boards, with a focus on the chipKIT MX3 microcontroller development board. Once the basics are covered, the book then moves on to describe the MPLAB and MPIDE packages using the C language for program development. The final part of the book is based on project development, with techniques learned in earlier chapters, using projects as examples. Each projectwill have a practical approach, with in-depth descriptions and program flow-charts with block diagrams, circuit diagrams, a full program listing and a follow up on testing and further development. With this book you will learn: State-of-the-art PIC32 32-bit microcontroller architecture How to program 32-bit PIC microcontrollers using MPIDE, MPLAB, and C language Core features of the chipKIT series development boards How to develop simple projects using the chipKIT MX3 development board and Pmod interface cards how to develop advanced projects using the chipKIT MX3 development boards
Networks-on-Chip: From Implementations to Programming Paradigms provides a thorough and bottom-up exploration of the whole NoC design space in a coherent and uniform fashion, from low-level router, buffer and topology implementations, to routing and flow control schemes, to co-optimizations of NoC and high-level programming paradigms. This lecture is intended for an advanced course on computer
architecture, suitable for graduate students or senior undergrads
who want to specialize in the area of computer architecture and
Networks-on-Chip. It is also intended for practitioners in the
industry in the area of microprocessor design, especially the
many-core processor design with a network-on-chip. The graduates
can learn many practical and theoretical lessons from this course,
and also can be motivated to delve further into the ideas and
designs proposed in this book. The industrial engineers can refer
this book to make practicing tradeoffs as well. The graduates and
engineers focus on off-chip network design can also refer this book
for deadlock-free routing algorithm designs.
This volume is the first ever collection devoted to the field of proof-theoretic semantics. Contributions address topics including the systematics of introduction and elimination rules and proofs of normalization, the categorial characterization of deductions, the relation between Heyting's and Gentzen's approaches to meaning, knowability paradoxes, proof-theoretic foundations of set theory, Dummett's justification of logical laws, Kreisel's theory of constructions, paradoxical reasoning, and the defence of model theory. The field of proof-theoretic semantics has existed for almost 50 years, but the term itself was proposed by Schroeder-Heister in the 1980s. Proof-theoretic semantics explains the meaning of linguistic expressions in general and of logical constants in particular in terms of the notion of proof. This volume emerges from presentations at the Second International Conference on Proof-Theoretic Semantics in Tubingen in 2013, where contributing authors were asked to provide a self-contained description and analysis of a significant research question in this area. The contributions are representative of the field and should be of interest to logicians, philosophers, and mathematicians alike.
This book introduces readers to the most advanced research results on Design for Manufacturability (DFM) with multiple patterning lithography (MPL) and electron beam lithography (EBL). The authors describe in detail a set of algorithms/methodologies to resolve issues in modern design for manufacturability problems with advanced lithography. Unlike books that discuss DFM from the product level or physical manufacturing level, this book describes DFM solutions from a circuit design level, such that most of the critical problems can be formulated and solved through combinatorial algorithms.
Architecting High Performing, Scalable and Available Enterprise Web Applications provides in-depth insights into techniques for achieving desired scalability, availability and performance quality goals for enterprise web applications. The book provides an integrated 360-degree view of achieving and maintaining these attributes through practical, proven patterns, novel models, best practices, performance strategies, and continuous improvement methodologies and case studies. The author shares his years of experience in application security, enterprise application testing, caching techniques, production operations and maintenance, and efficient project management techniques.
An introductory text to computer architecture, this comprehensive volume covers the concepts from logic gates to advanced computer architecture. It comes with a full spectrum of exercises and web-downloadable support materials, including assembler and simulator, which can be used in the context of different courses. The authors also make available a hardware description, which can be used in labs and assignments, for hands-on experimentation with an actual, simple processor.This unique compendium is a useful reference for undergraduates, graduates and professionals majoring in computer engineering, circuits and systems, software engineering, biomedical engineering and aerospace engineering.Related Link(s)
This book provides a single-source reference to the state-of-the-art of high-level programming models and compilation tool-chains for embedded system platforms. The authors address challenges faced by programmers developing software to implement parallel applications in embedded systems, where very often they are forced to rewrite sequential programs into parallel software, taking into account all the low level features and peculiarities of the underlying platforms. Readers will benefit from these authors' approach, which takes into account both the application requirements and the platform specificities of various embedded systems from different industries. Parallel programming tool-chains are described that take as input parameters both the application and the platform model, then determine relevant transformations and mapping decisions on the concrete platform, minimizing user intervention and hiding the difficulties related to the correct and efficient use of memory hierarchy and low level code generation.
This book provides readers with insight into an alternative approach for enhancing the reliability, security, and low power features of integrated circuit designs, related to transient faults, hardware Trojans, and power consumption. The authors explain how the addition of integrated sensors enables the detection of ionizing particles and how this information can be processed at a high layer. The discussion also includes a variety of applications, such as the detection of hardware Trojans and fault attacks, and how sensors can operate to provide different body bias levels and reduce power costs. Readers can benefit from these sensors-based approaches through designs with fast response time, non-intrusive integration on gate-level and reasonable design costs.
This book focuses on key simulation and evaluation technologies for 5G systems. Based on the most recent research results from academia and industry, it describes the evaluation methodologies in depth for network and physical layer technologies. The evaluation methods are discussed in depth. It also covers the analysis of the 5G candidate technologies and the testing challenges, the evolution of the testing technologies, fading channel measurement and modeling, software simulations, software hardware cosimulation, field testing and other novel evaluation methods. The fifth-generation (5G) mobile communications system targets highly improved network performances in terms of the network capacity and the number of connections. Testing and evaluation technologies is widely recognized and plays important roles in the wireless technology developments, along with the research on basic theory and key technologies. The investigation and developments on the multi-level and comprehensive evaluations for 5G new technologies, provides important performance references for the 5G technology filtering and future standardizations. Students focused on telecommunications, electronic engineering, computer science or other related disciplines will find this book useful as a secondary text. Researchers and professionals working within these related fields will also find this book useful as a reference.
The development of computer technology, particularly the work of the Fifth Generation Computer Project of Japan, will have far-reaching international implications. The author explores the uses of the new generation computer and information systems now under development in Japan by identifying their application, assessing their impact on society, and envisioning the transition to the future.
This book proposes a synergistic framework to help IP vendors to protect hardware IP privacy and integrity from design, optimization, and evaluation perspectives. The proposed framework consists of five interacting components that directly target at the primary IP violations. All the five algorithms are developed based on rigorous mathematical modeling for primary IP violations and focus on different stages of IC design, which can be combined to provide a formal security guarantee.
This book explains for readers how 3D chip stacks promise to increase the level of on-chip integration, and to design new heterogeneous semiconductor devices that combine chips of different integration technologies (incl. sensors) in a single package of the smallest possible size. The authors focus on heterogeneous 3D integration, addressing some of the most important challenges in this emerging technology, including contactless, optics-based, and carbon-nanotube-based 3D integration, as well as signal-integrity and thermal management issues in copper-based 3D integration. Coverage also includes the 3D heterogeneous integration of power sources, photonic devices, and non-volatile memories based on new materials systems.
Service orchestration techniques combine the benefits of Service Oriented Architecture (SOA) and Business Process Management (BPM) to compose and coordinate distributed software services. On the other hand, Software-as-a-Service (SaaS) is gaining popularity as a software delivery model through cloud platforms due to the many benefits to software vendors, as well as their customers. Multi-tenancy, which refers to the sharing of a single application instance across multiple customers or user groups (called tenants), is an essential characteristic of the SaaS model. Written in an easy to follow style with discussions supported by real-world examples, Service Orchestration as Organization introduces a novel approach with associated language, framework, and tool support to show how service orchestration techniques can be used to engineer and deploy SaaS applications.
This book presents the latest developments regarding a detailed mobile agent-enabled anomaly detection and verification system for resource constrained sensor networks; a number of algorithms on multi-aspect anomaly detection in sensor networks; several algorithms on mobile agent transmission optimization in resource constrained sensor networks; an algorithm on mobile agent-enabled in situ verification of anomalous sensor nodes; a detailed Petri Net-based formal modeling and analysis of the proposed system, and an algorithm on fuzzy logic-based cross-layer anomaly detection and mobile agent transmission optimization. As such, it offers a comprehensive text for interested readers from academia and industry alike.
"Focuses broadly on those aspects of the UNIX environment that are needed to provide a more global understanding, especially in its dealing with distributed and networked systems, in a very practical and hands-on manner." -- IEEE Network Magazine
This book analyzes energy and reliability as major challenges faced by designers of computing frameworks in the nanometer technology regime. The authors describe the existing solutions to address these challenges and then reveal a new reconfigurable computing platform, which leverages high-density nanoscale memory for both data storage and computation to maximize the energy-efficiency and reliability. The energy and reliability benefits of this new paradigm are illustrated and the design challenges are discussed. Various hardware and software aspects of this exciting computing paradigm are described, particularly with respect to hardware-software co-designed frameworks, where the hardware unit can be reconfigured to mimic diverse application behavior. Finally, the energy-efficiency of the paradigm described is compared with other, well-known reconfigurable computing platforms.
This book introduces state-of-the-art verification techniques for real-time embedded systems, based on the inverse method for parametric timed automata. It reviews popular formalisms for the specification and verification of timed concurrent systems and, in particular, timed automata as well as several extensions such as timed automata equipped with stopwatches, linear hybrid automata and affine hybrid automata.The inverse method is introduced, and its benefits for guaranteeing robustness in real-time systems are shown. Then, it is shown how an iteration of the inverse method can solve the good parameters problem for parametric timed automata by computing a behavioral cartography of the system. Different extensions are proposed particularly for hybrid systems and applications to scheduling problems using timed automata with stopwatches. Various examples, both from the literature and industry, illustrate the techniques throughout the book.Various parametric verifications are performed, in particular of abstractions of a memory circuit sold by the chipset manufacturer ST-Microelectronics, as well as of the prospective flight control system of the next generation of spacecraft designed by ASTRIUM Space Transportation. Contents: 1. Parametric Timed Automata.2. The Inverse Method for Parametric Timed Automata.3. The Inverse Method in Practice: Application to Case Studies.4. Behavioral Cartography of Timed Automata.5. Parameter Synthesis for Hybrid Automata.6. Application to the Robustness Analysis of Scheduling Problems.7. Conclusion and Perspectives. About the Authors etienne Andre is Associate Professor in the Laboratoire d'Informatique de Paris Nord, in the University of Paris 13 (Sorbonne Paris Cite) in France. His current research interests focus on the verification of real-time systems.Romain Soulat is currently completing his PhD at the LSV laboratory at ENS-Cachan in France, focusing on the modeling and verification of hybrid temporal systems.
System-on-chip (SoC) technology is revolutionizing the way computers are designed and used, driving down their cost and making them more pervasive than ever before. However, it's extremely challenging for designers to get their SoC designs right the first time. ARM System Architecture, Second Edition gives system designers an authoritative, inside perspective on SoC design -- and on ARM, the world's #1, fastest-growing SoC platform for mobile phones and information appliances. The insights in this book will be crucial to every system designer and ARM licensee seeking to build more effective SoC designs -- and get them to market more quickly. KEY TOPICS: In contrast to most ARM documentation, this book explains not only what ARM is, but why -- and how you can leverage it most effectively. Expert system designer and ARM specialist Steve Furber introduces the key design challenges associated with SoC systems, including memory hierarchy, caches, memory management, on-chip debug, and production test. Next, he presents state-of-the-art ARM-based solutions for each key problem. Furber reviews the entire ARM processor family, helping designers choose the most appropriate solutions; and covers both the ARM and Thumb programming models, providing real-world guidance for developing applications more quickly and effectively. The book includes a helpful review of the fundamentals of computer architecture, as well as valuable coverage of related topics such as digital signal processing and asynchronous design. MARKET:
Digital Hardware Testing presents realistic transistor-level fault models and testing methods for all types of circuits. The discussion details design-for-testability and built-in self-test methods, with coverage of boundary scan and emerging technologies such as partial scan, cross check, and circular self-test-path.
This is an introductory book on supercomputer applications written by a researcher who is working on solving scientific and engineering application problems on parallel computers. The book is intended to quickly bring researchers and graduate students working on numerical solutions of partial differential equations with various applications into the area of parallel processing.The book starts from the basic concepts of parallel processing, like speedup, efficiency and different parallel architectures, then introduces the most frequently used algorithms for solving PDEs on parallel computers, with practical examples. Finally, it discusses more advanced topics, including different scalability metrics, parallel time stepping algorithms and new architectures and heterogeneous computing networks which have emerged in the last few years of high performance computing. Hundreds of references are also included in the book to direct interested readers to more detailed and in-depth discussions of specific topics. |
![]() ![]() You may like...
Process Systems Engineering for…
Ravendra Singh, Zhihong Yuan
Hardcover
News Search, Blogs and Feeds - A Toolkit
Lars Vage, Lars Iselid
Paperback
R1,412
Discovery Miles 14 120
Java How to Program, Late Objects…
Paul Deitel, Harvey Deitel
Paperback
Advances in Synthesis Gas: Methods…
Mohammad Reza Rahimpour, Mohammad Amin Makarem, …
Paperback
R4,825
Discovery Miles 48 250
|