![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Differential equations
This book investigates the high degree of symmetry that lies hidden in integrable systems. To that end, differential equations arising from classical mechanics, such as the KdV equation and the KP equations, are used here by the authors to introduce the notion of an infinite dimensional transformation group acting on spaces of integrable systems. Chapters discuss the work of M. Sato on the algebraic structure of completely integrable systems, together with developments of these ideas in the work of M. Kashiwara. The text should be accessible to anyone with a knowledge of differential and integral calculus and elementary complex analysis, and it will be a valuable resource to both novice and expert alike.
This book presents mathematical models and numerical simulations of crowd dynamics. The core topic is the development of a new multiscale paradigm, which bridges the microscopic and macroscopic scales taking the most from each of them for capturing the relevant clues of complexity of crowds. The background idea is indeed that most of the complex trends exhibited by crowds are due to an intrinsic interplay between individual and collective behaviors. The modeling approach promoted in this book pursues actively this intuition and profits from it for designing general mathematical structures susceptible of application also in fields different from the inspiring original one. The book considers also the two most traditional points of view: the microscopic one, in which pedestrians are tracked individually and the macroscopic one, in which pedestrians are assimilated to a continuum. Selected existing models are critically analyzed. The work is addressed to researchers and graduate students.
In many physical problems several scales are present in space or time, caused by inhomogeneity of the medium or complexity of the mechanical process. A fundamental approach is to first construct micro-scale models, and then deduce the macro-scale laws and the constitutive relations by properly averaging over the micro-scale. The perturbation method of multiple scales can be used to derive averaged equations for a much larger scale from considerations of the small scales. In the mechanics of multiscale media, the analytical scheme of upscaling is known as the Theory of Homogenization.The authors share the view that the general methods of homogenization should be more widely understood and practiced by applied scientists and engineers. Hence this book is aimed at providing a less abstract treatment of the theory of homogenization for treating inhomogeneous media, and at illustrating its broad range of applications. Each chapter deals with a different class of physical problems. To tackle a new problem, the approach of first discussing the physically relevant scales, then identifying the small parameters and their roles in the normalized governing equations is adopted. The details of asymptotic analysis are only explained afterwards.
The thermodynamic limit is a mathematical technique for modeling crystals or other macroscopic objects by considering them as infinite periodic arrays of molecules. The technique allows models in solid state physics to be derived directly from models in quantum chemistry. This book presents new results, many previously unpublished, for a large class of models and provides a survey of the mathematics of thermodynamic limit problems. The authors both work closely with Fields Medal-winner Pierre-Louis Lion, and the book will be a valuable tool for applied mathematicians and mathematical physicists studying nonlinear partial differential equations.
This collection covers a wide range of topics of infinite dimensional dynamical systems generated by parabolic partial differential equations, hyperbolic partial differential equations, solitary equations, lattice differential equations, delay differential equations, and stochastic differential equations. Infinite dimensional dynamical systems are generated by evolutionary equations describing the evolutions in time of systems whose status must be depicted in infinite dimensional phase spaces. Studying the long-term behaviors of such systems is important in our understanding of their spatiotemporal pattern formation and global continuation, and has been among major sources of motivation and applications of new developments of nonlinear analysis and other mathematical theories. Theories of the infinite dimensional dynamical systems have also found more and more important applications in physical, chemical, and life sciences. This book collects 19 papers from 48 invited lecturers to the International Conference on Infinite Dimensional Dynamical Systems held at York University, Toronto, in September of 2008. As the conference was dedicated to Professor George Sell from University of Minnesota on the occasion of his 70th birthday, this collection reflects the pioneering work and influence of Professor Sell in a few core areas of dynamical systems, including non-autonomous dynamical systems, skew-product flows, invariant manifolds theory, infinite dimensional dynamical systems, approximation dynamics, and fluid flows. "
Although the analysis of scattering for closed bodies of simple geometric shape is well developed, structures with edges, cavities, or inclusions have seemed, until now, intractable to analytical methods. This two-volume set describes a breakthrough in analytical techniques for accurately determining diffraction from classes of canonical scatterers with comprising edges and other complex cavity features. It is an authoritative account of mathematical developments over the last two decades that provides benchmarks against which solutions obtained by numerical methods can be verified. The first volume, Canonical Structures in Potential Theory, develops the mathematics, solving mixed boundary potential problems for structures with cavities and edges. The second volume, Acoustic and Electromagnetic Diffraction by Canonical Structures, examines the diffraction of acoustic and electromagnetic waves from several classes of open structures with edges or cavities. Together these volumes present an authoritative and unified treatment of potential theory and diffraction-the first complete description quantifying the scattering mechanisms in complex structures.
This book is intended to be a self-contained introduction to analytic foundations of a level set method for various surface evolution equations including curvature ?ow equations. These equations are important in various ?elds including material sciences, image processing and di?erential geometry. The goal of this book is to introduce a generalized notion of solutions allowing singularities and solve the initial-value problem globally-in-time in a generalized sense. Various equivalent de?nitions of solutions are studied. Several new results on equivalence are also presented. Wepresentherearathercompleteintroductiontothetheoryofviscosityso- tionswhichis a keytoolforthe levelsetmethod. Alsoa self-containedexplanation isgivenforgeneralsurfaceevolutionequationsofthe secondorder.Althoughmost ofthe resultsin this book aremoreor lessknown,they arescatteredinseveralr- erences, sometimes without proof. This book presents these results in a synthetic way with full proofs. However, the references are not exhaustive at all. The book is suitable for applied researchers who would like to know the detail of the theory as well as its ?avour.No familiarity with di?erential geometry and the theory of viscosity solutions is required. The prerequisites are calculus, linear algebra and some familiarity with semicontinuous functions. This book is also suitable for upper level under graduate students who are interested in the ?eld.
Many ecological phenomena involve space as well as time and arise from a combination of random and deterministic processes. Such phenomena include the effects of habitat fragmentation, which is a common result of human activity and a major problem in biological conservation. Reaction-diffusion models provide one approach to describing how random movements and deterministic interactions between individuals combine to influence the dynamics of populations and the structure of ecological communities. Spatial Ecology via Reaction-Diffusion Equations addresses the problem of modeling spatial effects in ecology and population dynamics using reaction-diffusion models.
Spatial Ecology via Reaction-Diffusion Equations provides a practical introduction to the subject for graduate students and researchers working in spatial modeling from mathematics, statistics, ecology, geography and biology.
Here is a comprehensive introduction to holomorphic dynamics, that is, the dynamics induced by the iteration of various analytic maps in complex number spaces. This has been the focus of much attention in recent years, for example, with the discovery of the Mandelbrot set, and work on chaotic behavior of quadratic maps. The mathematically unified treatment emphasizes the substantial role of classical complex analysis in understanding holomorphic dynamics and offers up-to-date coverage of the modern theory. The authors cover entire functions, Kleinian groups and polynomial automorphisms of several complex variables such as complex Hénon maps, as well as the case of rational functions.
This book treats nonlinear dynamics in both Hamiltonian and dissipative systems. The emphasis is on the mechanics for generating chaotic motion, methods of calculating the transitions from regular to chaotic motion, and the dynamical and statistical properties of the dynamics when it is chaotic. The book is intended as a self consistent treatment of the subject at the graduate level and as a reference for scientists already working in the field. It emphasizes both methods of calculation and results. It is accessible to physicists and engineers without training in modern mathematics. The new edition brings the subject matter in a rapidly expanding field up to date, and has greatly expanded the treatment of dissipative dynamics to include most important subjects. It can be used as a graduate text for a two semester course covering both Hamiltonian and dissipative dynamics.
Although the analysis of scattering for closed bodies of simple geometric shape is well developed, structures with edges, cavities, or inclusions have seemed, until now, intractable to analytical methods. This two-volume set describes a breakthrough in analytical techniques for accurately determining diffraction from classes of canonical scatterers with comprising edges and other complex cavity features. It is an authoritative account of mathematical developments over the last two decades that provides benchmarks against which solutions obtained by numerical methods can be verified. The first volume, Canonical Structures in Potential Theory, develops the mathematics, solving mixed boundary potential problems for structures with cavities and edges. The second volume, Acoustic and Electromagnetic Diffraction by Canonical Structures, examines the diffraction of acoustic and electromagnetic waves from several classes of open structures with edges or cavities. Together these volumes present an authoritative and unified treatment of potential theory and diffraction-the first complete description quantifying the scattering mechanisms in complex structures.
In addition to explaining and modeling unexplored phenomena in nature and society, chaos uses vital parts of nonlinear dynamical systems theory and established chaotic theory to open new frontiers and fields of study. Handbook of Applications of Chaos Theory covers the main parts of chaos theory along with various applications to diverse areas. Expert contributors from around the world show how chaos theory is used to model unexplored cases and stimulate new applications. Accessible to scientists, engineers, and practitioners in a variety of fields, the book discusses the intermittency route to chaos, evolutionary dynamics and deterministic chaos, and the transition to phase synchronization chaos. It presents important contributions on strange attractors, self-exciting and hidden attractors, stability theory, Lyapunov exponents, and chaotic analysis. It explores the state of the art of chaos in plasma physics, plasma harmonics, and overtone coupling. It also describes flows and turbulence, chaotic interference versus decoherence, and an application of microwave networks to the simulation of quantum graphs. The book proceeds to give a detailed presentation of the chaotic, rogue, and noisy optical dissipative solitons; parhelic-like circle and chaotic light scattering; and interesting forms of the hyperbolic prism, the Poincare disc, and foams. It also covers numerous application areas, from the analysis of blood pressure data and clinical digital pathology to chaotic pattern recognition to economics to musical arts and research.
This book gathers peer-reviewed contributions representing modern trends in the theory of generalized functions and pseudo-differential operators. It is dedicated to Professor Michael Oberguggenberger (Innsbruck University, Austria) in honour of his 60th birthday. The topics covered were suggested by the ISAAC Group in Generalized Functions (GF) and the ISAAC Group in Pseudo-Differential Operators (IGPDO), which met at the 9th ISAAC congress in Krakow, Poland in August 2013. Topics include Columbeau algebras, ultra-distributions, partial differential equations, micro-local analysis, harmonic analysis, global analysis, geometry, quantization, mathematical physics, and time-frequency analysis. Featuring both essays and research articles, the book will be of great interest to graduate students and researchers working in analysis, PDE and mathematical physics, while also offering a valuable complement to the volumes on this topic previously published in the OT series.
Due to the scale and complexity of data sets currently being collected in areas such as health, transportation, environmental science, engineering, information technology, business and finance, modern quantitative analysts are seeking improved and appropriate computational and statistical methods to explore, model and draw inferences from big data. This book aims to introduce suitable approaches for such endeavours, providing applications and case studies for the purpose of demonstration. Computational and Statistical Methods for Analysing Big Data with Applications starts with an overview of the era of big data. It then goes onto explain the computational and statistical methods which have been commonly applied in the big data revolution. For each of these methods, an example is provided as a guide to its application. Five case studies are presented next, focusing on computer vision with massive training data, spatial data analysis, advanced experimental design methods for big data, big data in clinical medicine, and analysing data collected from mobile devices, respectively. The book concludes with some final thoughts and suggested areas for future research in big data.
This volume collects six articles on selected topics at the frontier between partial differential equations and spectral theory, written by leading specialists in their respective field. The articles focus on topics that are in the center of attention of current research, with original contributions from the authors. They are written in a clear expository style that makes them accessible to a broader audience. The articles contain a detailed introduction and discuss recent progress, provide additional motivation, and develop the necessary tools. Moreover, the authors share their views on future developments, hypotheses, and unsolved problems.
Morrey spaces were introduced by Charles Morrey to investigate the local behaviour of solutions to second order elliptic partial differential equations. The technique is very useful in many areas in mathematics, in particular in harmonic analysis, potential theory, partial differential equations and mathematical physics. Across two volumes, the authors of Morrey Spaces: Introduction and Applications to Integral Operators and PDE's discuss the current state of art and perspectives of developments of this theory of Morrey spaces, with focus on harmonic analysis in volume I and generalizations and interpolation of Morrey spaces in volume II. Features Provides a 'from-scratch' overview of the topic readable by anyone with an understanding of integration theory Suitable for graduate students, masters course students, and researchers in PDE's or Geometry Replete with exercises and examples to aid the reader's understanding
Based on the proceedings of the International Conference on Stochastic Partial Differential Equations and Applications-V held in Trento, Italy, this illuminating reference presents applications in filtering theory, stochastic quantization, quantum probability, and mathematical finance and identifies paths for future research in the field. Stochastic Partial Differential Equations and Applications analyzes recent developments in the study of quantum random fields, control theory, white noise, and fluid dynamics. It presents precise conditions for nontrivial and well-defined scattering, new Gaussian noise terms, models depicting the asymptotic behavior of evolution equations, and solutions to filtering dilemmas in signal processing. With contributions from more than 40 leading experts in the field, Stochastic Partial Differential Equations and Applications is an excellent resource for pure and applied mathematicians; numerical analysts; mathematical physicists; geometers; economists; probabilists; computer scientists; control, electrical, and electronics engineers; and upper-level undergraduate and graduate students in these disciplines.
Piece-wise and Max-Type Difference Equations: Periodic and Eventually Periodic Solutions is intended for lower-level undergraduate students studying discrete mathematics. The book focuses on sequences as recursive relations and then transitions to periodic recursive patterns and eventually periodic recursive patterns. In addition to this, it will also focus on determining the patterns of periodic and eventually periodic solutions inductively. The aim of the author, throughout this book, is to get students to understand the significance of pattern recognition as a mathematical tool. Key Features Can provide possible topics for undergraduate research and for bachelor's thesis Provides supplementary practice problems and some open-ended research problems at the end of each chapter Focusses on determining the patterns of periodic and eventually periodic solutions inductively Enhances students' algebra skills before moving forward to upper level courses Familiarize students with the topics before they start undergraduate research by providing applications.
The theory of multivalued maps and the theory of differential inclusions are closely connected and intensively developing branches of contemporary mathematics. They have effective and interesting applications in control theory, optimization, calculus of variations, non-smooth and convex analysis, game theory, mathematical economics and in other fields.This book presents a user-friendly and self-contained introduction to both subjects. It is aimed at 'beginners', starting with students of senior courses. The book will be useful both for readers whose interests lie in the sphere of pure mathematics, as well as for those who are involved in applicable aspects of the theory. In Chapter 0, basic definitions and fundamental results in topology are collected. Chapter 1 begins with examples showing how naturally the idea of a multivalued map arises in diverse areas of mathematics, continues with the description of a variety of properties of multivalued maps and finishes with measurable multivalued functions. Chapter 2 is devoted to the theory of fixed points of multivalued maps. The whole of Chapter 3 focuses on the study of differential inclusions and their applications in control theory. The subject of last Chapter 4 is the applications in dynamical systems, game theory, and mathematical economics.The book is completed with the bibliographic commentaries and additions containing the exposition related both to the sections described in the book and to those which left outside its framework. The extensive bibliography (including more than 400 items) leads from basic works to recent studies.
Aimed primarily at undergraduate level university students, An Illustrative Introduction to Modern Analysis provides an accessible and lucid contemporary account of the fundamental principles of Mathematical Analysis. The themes treated include Metric Spaces, General Topology, Continuity, Completeness, Compactness, Measure Theory, Integration, Lebesgue Spaces, Hilbert Spaces, Banach Spaces, Linear Operators, Weak and Weak* Topologies. Suitable both for classroom use and independent reading, this book is ideal preparation for further study in research areas where a broad mathematical toolbox is required.
Nonlinear elliptic differential equations are a diverse subject with important applications to the physical and social sciences and engineering. They also arise naturally in geometry. In particular, much of the progress in the area in the twentieth century was driven by geometric applications, from the Bernstein problem to the existence of Kahler-Einstein metrics. This book, designed as a textbook, provides a detailed discussion of the Dirichlet problems for quasilinear and fully nonlinear elliptic differential equations of the second order with an emphasis on mean curvature equations and on Monge-Ampere equations. It gives a user-friendly introduction to the theory of nonlinear elliptic equations with special attention given to basic results and the most important techniques. Rather than presenting the topics in their full generality, the book aims at providing self-contained, clear, and ``elementary'' proofs for results in important special cases. This book will serve as a valuable resource for graduate students or anyone interested in this subject.
This book is a systematic presentation of the solution of one of the fundamental problems of the theory of random dynamical systems - the problem of topological classification and structural stability of linear hyperbolic random dynamical systems. As a relatively new and fast expanding field of research, this theory attracts the attention of researchers from various fields of science. It unites and develops the classical deterministic theory of dynamical systems and probability theory, hence finds many applications in a very wide range of disciplines from physics to biology to engineering, finance and economics. Recent developments call for a systematic presentation of the theory. Mathematicians working in the theory of dynamical systems, stochastic dynamics as well as those interested in applications of mathematical systems with random noise will find this timely book a valuable reference and rich source of modern mathematical methods and results.
This is an introductory level textbook for partial differential equations (PDEs). It is suitable for a one-semester undergraduate level or two-semester graduate level course in PDEs or applied mathematics. This volume is application-oriented and rich in examples. Going through these examples, the reader is able to easily grasp the basics of PDEs.Chapters One to Five are organized to aid understanding of the basic PDEs. They include the first-order equations and the three fundamental second-order equations, i.e. the heat, wave and Laplace equations. Through these equations, we learn the types of problems, how we pose the problems, and the methods of solutions such as the separation of variables and the method of characteristics. The modeling aspects are explained as well. The methods introduced in earlier chapters are developed further in Chapters Six to Twelve. They include the Fourier series, the Fourier and the Laplace transforms, and the Green's functions. Equations in higher dimensions are also discussed in detail. In this second edition, a new chapter is added and numerous improvements have been made including the reorganization of some chapters. Extensions of nonlinear equations treated in earlier chapters are also discussed.Partial differential equations are becoming a core subject in Engineering and the Sciences. This textbook will greatly benefit those studying in these subjects by covering basic and advanced topics in PDEs based on applications.
This Research Note presents some recent advances in various important domains of partial differential equations and applied mathematics including equations and systems of elliptic and parabolic type and various applications in physics, mechanics and engineering. These topics are now part of various areas of science and have experienced tremendous development during the last decades. ------------------------------------- |
![]() ![]() You may like...
Current Trends in Transformation Groups
Anthony Bak, Masaharu Morimoto, …
Hardcover
R1,752
Discovery Miles 17 520
Introduction to Microelectromechanical…
Hector J de los Santos
Hardcover
R3,632
Discovery Miles 36 320
|