Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Differential equations
Straightforward and easy to read, DIFFERENTIAL EQUATIONS WITH BOUNDARY-VALUE PROBLEMS, 9E, INTERNATIONAL METRIC EDITION gives you a thorough overview of the topics typically taught in a first course in Differential Equations as well as an introduction to boundary-value problems and partial Differential Equations. Your study will be supported by a bounty of pedagogical aids, including an abundance of examples, explanations, "Remarks" boxes, definitions, and more.
DIFFERENTIAL EQUATIONS WITH BOUNDARY-VALUE PROBLEMS, 8E, International Edition strikes a balance between the analytical, qualitative, and quantitative approaches to the study of differential equations. This proven and accessible book speaks to beginning engineering and math students through a wealth of pedagogical aids, including an abundance of examples, explanations, "Remarks" boxes, definitions, and group projects. Written in a straightforward, readable, and helpful style, the book provides a thorough treatment of boundary-value problems and partial differential equations.
Linearity plays a critical role in the study of elementary
differential equations; linear differential equations, especially
systems thereof, demonstrate a fundamental application of linear
algebra. In Differential Equations with Linear Algebra, we explore
this interplay between linear algebra and differential equations
and examine introductory and important ideas in each, usually
through the lens of important problems that involve differential
equations. Written at a sophomore level, the text is accessible to
students who have completed multivariable calculus. With a
systems-first approach, the book is appropriate for courses for
majors in mathematics, science, and engineering that study systems
of differential equations.
DIFFERENTIAL EQUATIONS WITH BOUNDARY-VALUE PROBLEMS, 8E, INTERNATIONAL METRIC EDITION strikes a balance between the analytical, qualitative, and quantitative approaches to the study of differential equations. Beginning engineering and math students like you benefit from this accessible text's wealth of pedagogical aids, including an abundance of examples, explanations, "Remarks" boxes, definitions, and group projects. Written in a straightforward, readable, and helpful style, the book provides you with a thorough treatment of boundary-value problems and partial differential equations.
Study smarter and stay on top of your differential equations course with the bestselling Schaum's Outline-now with the NEW Schaum's app and website! Schaum's Outline of Differential Equations, Fifth Edition is the go-to study guide for all students of science who need to learn or refresh their knowledge of differential equations. With an outline format that facilitates quick and easy review and mirrors the course in scope and sequence, this book helps you understand basic concepts and get the extra practice you need to excel in the course. It supports the all major differential equations textbooks and is useful for study in Calculus (I, II, and III), Mathematical Modeling, Introductory Differential Equations and Differential Equations. Chapters include an Introduction to Modeling and Qualitative Methods, Classifications of First-Order Differential Equations, Linear Differential Equations, Variation of Parameters, Initial-Value Problems for Linear Differential Equations, Graphical and Numerical Methods for Solving First-Order Differential Equations, Solutions of Linear Differential Equations with Constant Coefficients by Laplace Transforms, and more. Features: NEW to this edition: the new Schaum's app and website! NEW CHAPTERS include Autonomous Differential Equations and Qualitative Methods; Eigenvalues and Eigenvectors; three chapters dealing with Solutions of Systems of Autonomous Equations via Eigenvalues and Eigenvectors (real and distinct, real and equal, and complex conjugate Eigenvalues) 20 problem-solving videos online 563 solved problems Outline format provides a quick and easy review of differential equations Clear, concise explanations of differential equations concepts Hundreds of examples with explanations of key concepts Supports all major textbooks for differential equations courses Appropriate for the following courses: Calculus (I, II, and III), Mathematical Modeling, Introductory Differential Equations, and Differential Equations
Quite a number of phenomena in science and technology, industrial and/or agricultural production and transport, medical and/or biological flows and movements, social and/or economical developments, etc., depend on many variables, and are very much complicated. Although the detailed knowledge is accumulated in respective fields, it is meaningful to model and analyze the essential part of the phenomena in terms of smaller number of variables, which falls into partial differential equations. This book aims at providing students and researchers the basic ideas and the methods to solve problems in various fields. Particular attention is paid to bridge the gap between mathematics and the real world. To do this, we start from a simple system with intuitively understandable physical background, extract the essential part, formulate into mathematical tools, and then generalize for further application. Here logical thinking in depth and wide linking to various fields are sought to construct intellectual network.
Quite a number of phenomena in science and technology, industrial and/or agricultural production and transport, medical and/or biological flows and movements, social and/or economical developments, etc., depend on many variables, and are very much complicated. Although the detailed knowledge is accumulated in respective fields, it is meaningful to model and analyze the essential part of the phenomena in terms of smaller number of variables, which falls into partial differential equations. This book aims at providing students and researchers the basic ideas and the methods to solve problems in various fields. Particular attention is paid to bridge the gap between mathematics and the real world. To do this, we start from a simple system with intuitively understandable physical background, extract the essential part, formulate into mathematical tools, and then generalize for further application. Here logical thinking in depth and wide linking to various fields are sought to construct intellectual network.
There is an extensive literature in the form of papers (but no books) on lattice dynamical systems. The book focuses on dissipative lattice dynamical systems and their attractors of various forms such as autonomous, nonautonomous and random. The existence of such attractors is established by showing that the corresponding dynamical system has an appropriate kind of absorbing set and is asymptotically compact in some way.There is now a very large literature on lattice dynamical systems, especially on attractors of all kinds in such systems. We cannot hope to do justice to all of them here. Instead, we have focused on key areas of representative types of lattice systems and various types of attractors. Our selection is biased by our own interests, in particular to those dealing with biological applications. One of the important results is the approximation of Heaviside switching functions in LDS by sigmoidal functions.Nevertheless, we believe that this book will provide the reader with a solid introduction to the field, its main results and the methods that are used to obtain them.
This work is devoted to fixed point theory as well as the theory of accretive operators in Banach spaces. The goal is to develop, in self-contained way, the main results in both theories. Special emphasis is given to the study how both theories can be used to study the existence and uniqueness of solution of several types of partial differential equations and integral equations.
Hoermander operators are a class of linear second order partial differential operators with nonnegative characteristic form and smooth coefficients, which are usually degenerate elliptic-parabolic, but nevertheless hypoelliptic, that is highly regularizing. The study of these operators began with the 1967 fundamental paper by Lars Hoermander and is intimately connected to the geometry of vector fields.Motivations for the study of Hoermander operators come for instance from Kolmogorov-Fokker-Planck equations arising from modeling physical systems governed by stochastic equations and the geometric theory of several complex variables. The aim of this book is to give a systematic exposition of a relevant part of the theory of Hoermander operators and vector fields, together with the necessary background and prerequisites.The book is intended for self-study, or as a reference book, and can be useful to both younger and senior researchers, already working in this area or aiming to approach it.
The Qualitative Theory of Ordinary Differential Equations (ODEs) occupies a rather special position both in Applied and Theoretical Mathematics. On the one hand, it is a continuation of the standard course on ODEs. On the other hand, it is an introduction to Dynamical Systems, one of the main mathematical disciplines in recent decades. Moreover, it turns out to be very useful for graduates when they encounter differential equations in their work; usually those equations are very complicated and cannot be solved by standard methods.The main idea of the qualitative analysis of differential equations is to be able to say something about the behavior of solutions of the equations, without solving them explicitly. Therefore, in the first place such properties like the stability of solutions stand out. It is the stability with respect to changes in the initial conditions of the problem. Note that, even with the numerical approach to differential equations, all calculations are subject to a certain inevitable error. Therefore, it is desirable that the asymptotic behavior of the solutions is insensitive to perturbations of the initial state.Each chapter contains a series of problems (with varying degrees of difficulty) and a self-respecting student should solve them. This book is based on Raul Murillo's translation of Henryk Zoladek's lecture notes, which were in Polish and edited in the portal Matematyka Stosowana (Applied Mathematics) in the University of Warsaw.
The introduction of cross diffusivity opens many questions in the theory of reactiondiffusion systems. This book will be the first to investigate such problems presenting new findings for researchers interested in studying parabolic and elliptic systems where classical methods are not applicable. In addition, The Gagliardo-Nirenberg inequality involving BMO norms is improved and new techniques are covered that will be of interest. This book also provides many open problems suitable for interested Ph.D students.
Containing the proceedings from the 41st conference on Boundary Elements and other Mesh Reduction Methods (BEM/MRM), this book is a collection of high quality papers that report on advances in techniques that reduce or eliminate the type of meshes associated with such methods as finite elements or finite differences. As design, analysis and manufacture become more integrated the chances are that the users will be less aware of the capabilities of the analytical techniques that are at the core of the process. This reinforces the need to retain expertise in certain specialised areas of numerical methods, such as BEM/MRM, to ensure that all new tools perform satisfactorily in the integrated process. The maturity of BEM since 1978 has resulted in a substantial number of industrial applications that demonstrate the accuracy, robustness and easy use of the technique. Their range still needs to be widened, taking into account the potentialities of the Mesh Reduction techniques in general. The papers in this volume help to expand the range of applications as well as the type of materials in response to industrial and professional requirements.
Elementary Number Theory, 6th Edition, blends classical theory with modern applications and is notable for its outstanding exercise sets. A full range of exercises, from basic to challenging, helps students explore key concepts and push their understanding to new heights. Computational exercises and computer projects are also available. Reflecting many years of professor feedback, this edition offers new examples, exercises, and applications, while incorporating advancements and discoveries in number theory made in the past few years.
A substantial number of problems in physics, chemical physics, and biology, are modeled through reaction-diffusion equations to describe temperature distribution or chemical substance concentration. For problems arising from ecology, sociology, or population dynamics, they describe the density of some populations or species. In this book the state variable is a concentration, or a density according to the cases. The reaction function may be complex and include time delays terms that model various situations involving maturation periods, resource regeneration times, or incubation periods. The dynamics may occur in heterogeneous media and may depend upon a small or large parameter, as well as the reaction term. From a purely formal perspective, these parameters are indexed by n. Therefore, reaction-diffusion equations give rise to sequences of Cauchy problems.The first part of the book is devoted to the convergence of these sequences in a sense made precise in the book. The second part is dedicated to the specific case when the reaction-diffusion problems depend on a small parameter intended to tend towards 0. This parameter accounts for the size of small spatial and randomly distributed heterogeneities. The convergence results obtained in the first part, with additionally some probabilistic tools, are applied to this specific situation. The limit problems are illustrated through biological invasion, food-limited or prey-predator models where the interplay between environment heterogeneities in the individual evolution of propagation species plays an essential role. They provide a description in terms of deterministic and homogeneous reaction-diffusion equations, for which numerical schemes are possible.
For courses in Differential Equations and Linear Algebra. The right balance between concepts, visualisation, applications, and skills Differential Equations and Linear Algebra provides the conceptual development and geometric visualisation of a modern differential equations and linear algebra course that is essential to science and engineering students. It balances traditional manual methods with the new, computer-based methods that illuminate qualitative phenomena - a comprehensive approach that makes accessible a wider range of more realistic applications. The book combines core topics in elementary differential equations with concepts and methods of elementary linear algebra. It starts and ends with discussions of mathematical modeling of real-world phenomena, evident in figures, examples, problems, and applications throughout.
This book highlights new developments in the wide and growing field of partial differential equations (PDE)-constrained optimization. Optimization problems where the dynamics evolve according to a system of PDEs arise in science, engineering, and economic applications and they can take the form of inverse problems, optimal control problems or optimal design problems. This book covers new theoretical, computational as well as implementation aspects for PDE-constrained optimization problems under uncertainty, in shape optimization, and in feedback control, and it illustrates the new developments on representative problems from a variety of applications.
This monograph contains papers that were delivered at the special session on Geometric Potential Analysis, that was part of the Mathematical Congress of the Americas 2021, virtually held in Buenos Aires. The papers, that were contributed by renowned specialists worldwide, cover important aspects of current research in geometrical potential analysis and its applications to partial differential equations and mathematical physics.
This book provides a broad, interdisciplinary overview of non-Archimedean analysis and its applications. Featuring new techniques developed by leading experts in the field, it highlights the relevance and depth of this important area of mathematics, in particular its expanding reach into the physical, biological, social, and computational sciences as well as engineering and technology. In the last forty years the connections between non-Archimedean mathematics and disciplines such as physics, biology, economics and engineering, have received considerable attention. Ultrametric spaces appear naturally in models where hierarchy plays a central role - a phenomenon known as ultrametricity. In the 80s, the idea of using ultrametric spaces to describe the states of complex systems, with a natural hierarchical structure, emerged in the works of Fraunfelder, Parisi, Stein and others. A central paradigm in the physics of certain complex systems - for instance, proteins - asserts that the dynamics of such a system can be modeled as a random walk on the energy landscape of the system. To construct mathematical models, the energy landscape is approximated by an ultrametric space (a finite rooted tree), and then the dynamics of the system is modeled as a random walk on the leaves of a finite tree. In the same decade, Volovich proposed using ultrametric spaces in physical models dealing with very short distances. This conjecture has led to a large body of research in quantum field theory and string theory. In economics, the non-Archimedean utility theory uses probability measures with values in ordered non-Archimedean fields. Ultrametric spaces are also vital in classification and clustering techniques. Currently, researchers are actively investigating the following areas: p-adic dynamical systems, p-adic techniques in cryptography, p-adic reaction-diffusion equations and biological models, p-adic models in geophysics, stochastic processes in ultrametric spaces, applications of ultrametric spaces in data processing, and more. This contributed volume gathers the latest theoretical developments as well as state-of-the art applications of non-Archimedean analysis. It covers non-Archimedean and non-commutative geometry, renormalization, p-adic quantum field theory and p-adic quantum mechanics, as well as p-adic string theory and p-adic dynamics. Further topics include ultrametric bioinformation, cryptography and bioinformatics in p-adic settings, non-Archimedean spacetime, gravity and cosmology, p-adic methods in spin glasses, and non-Archimedean analysis of mental spaces. By doing so, it highlights new avenues of research in the mathematical sciences, biosciences and computational sciences.
This book consists of three volumes. The first volume contains introductory accounts of topological dynamical systems, fi nite-state symbolic dynamics, distance expanding maps, and ergodic theory of metric dynamical systems acting on probability measure spaces, including metric entropy theory of Kolmogorov and Sinai. More advanced topics comprise infi nite ergodic theory, general thermodynamic formalism, topological entropy and pressure. Thermodynamic formalism of distance expanding maps and countable-alphabet subshifts of fi nite type, graph directed Markov systems, conformal expanding repellers, and Lasota-Yorke maps are treated in the second volume, which also contains a chapter on fractal geometry and its applications to conformal systems. Multifractal analysis and real analyticity of pressure are also covered. The third volume is devoted to the study of dynamics, ergodic theory, thermodynamic formalism and fractal geometry of rational functions of the Riemann sphere. |
You may like...
Schwarz Methods and Multilevel…
Ernst P. Stephan, Thanh Tran
Hardcover
R4,624
Discovery Miles 46 240
Orthogonal Polynomials: Current Trends…
Francisco Marcellan, Edmundo J. Huertas
Hardcover
R4,271
Discovery Miles 42 710
Sparse Grids and Applications - Munich…
Hans-Joachim Bungartz, Jochen Garcke, …
Hardcover
R4,907
Discovery Miles 49 070
Nonlinear Problems with Lack of…
Giovanni Molica Bisci, Patrizia Pucci
Hardcover
R3,854
Discovery Miles 38 540
A Treatise on Differential Equations
Andrew Russell Forsyth
Hardcover
Ergodic Theory - Finite and Infinite…
Mariusz Urbanski, Mario Roy, …
Hardcover
R4,435
Discovery Miles 44 350
|