![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Differential equations
This book provides the readers numerical tools for a systematic analysis of bifurcation problems in reaction- diffusion equations. Emphasis is put on combination of numerical analysis with bifurcation theory and application to reaction-diffusion equations. Many examples and figures are used to illustrate analysis of bifurcation scenario and implementation of numerical schemes. The reader will have a thorough understanding of numerical bifurcation analysis and the necessary tools for investigating nonlinear phenomena in reaction-diffusion equations.
Providing readers with the very basic knowledge necessary to begin research on differential equations with professional ability, the selection of topics here covers the methods and results that are applicable in a variety of different fields. The book is divided into four parts. The first covers fundamental existence, uniqueness, smoothness with respect to data, and nonuniqueness. The second part describes the basic results concerning linear differential equations, while the third deals with nonlinear equations. In the last part the authors write about the basic results concerning power series solutions. Each chapter begins with a brief discussion of its contents and history, and hints and comments for many problems are given throughout. With 114 illustrations and 206 exercises, the book is suitable for a one-year graduate course, as well as a reference book for research mathematicians.
The book includes lectures given by the plenary and key speakers at the 9th International ISAAC Congress held 2013 in Krakow, Poland. The contributions treat recent developments in analysis and surrounding areas, concerning topics from the theory of partial differential equations, function spaces, scattering, probability theory, and others, as well as applications to biomathematics, queueing models, fractured porous media and geomechanics.
This book deals with solving mathematically the unsteady flame propagation equations. New original mathematical methods for solving complex non-linear equations and investigating their properties are presented. Pole solutions for flame front propagation are developed. Premixed flames and filtration combustion have remarkable properties: the complex nonlinear integro-differential equations for these problems have exact analytical solutions described by the motion of poles in a complex plane. Instead of complex equations, a finite set of ordinary differential equations is applied. These solutions help to investigate analytically and numerically properties of the flame front propagation equations.
From cell division to heartbeat, clocklike rhythms pervade the activities of every living organism. The cycles of life are ultimately biochemical in mechanism but many of the principles that dominate their orchestration are essentially mathematical. The Geometry of Biological Time describes periodic processes in living systems and their non-living analogues in the abstract terms of nonlinear dynamics. Enphasis is given in phase singularities, waves, and mutual synchronization in tissues composed of many clocklike units. Also provided are descriptions of the best-studied experimental systems such as chemical oscillators, pacemaker neurons, circadian clocks, and excitable media organized into biochemical and bioelectrical wave patterns in two and three dimensions. No theoretical background is assumed; the required notions are introduced through an extensive collection of pictures and easily understood examples. This extensively updated new edition incorporates the fruits of two decades' further exploration guided by the same principles. Limit cycle theories of circadian clocks are now applied to human jet lag and are understood in terms of the molecular genetics of their recently discovered mechanisms. Supercomputers reveal the unforeseen architecture and dynamics of three-dimensional scroll waves in excitable media. Their role in life-threatening electrical aberrations of the heartbeat is exposed by laboratory experiments and corroborated in the clinic. These developments trace back to three basic mathematical ideas.
In a unified form, this monograph presents fundamental results on the approximation of centralized and decentralized stochastic control problems, with uncountable state, measurement, and action spaces. It demonstrates how quantization provides a system-independent and constructive method for the reduction of a system with Borel spaces to one with finite state, measurement, and action spaces. In addition to this constructive view, the book considers both the information transmission approach for discretization of actions, and the computational approach for discretization of states and actions. Part I of the text discusses Markov decision processes and their finite-state or finite-action approximations, while Part II builds from there to finite approximations in decentralized stochastic control problems. This volume is perfect for researchers and graduate students interested in stochastic controls. With the tools presented, readers will be able to establish the convergence of approximation models to original models and the methods are general enough that researchers can build corresponding approximation results, typically with no additional assumptions.
This book deals with methods for solving nonstiff ordinary differential equations. The first chapter describes the historical development of the classical theory from Newton, Leibniz, Euler, and Hamilton to limit cycles and strange attractors. In a second chapter a modern treatment of Runge-Kutta and extrapolation methods is given. Also included are continuous methods for dense output, parallel Runge-Kutta methods, special methods for Hamiltonian systems, second order differential equations and delay equations. The third chapter begins with the classical theory of multistep methods, and concludes with the theory of general linear methods. Many applications from physics, chemistry, biology, and astronomy together with computer programs and numerical comparisons are presented. This new edition has been rewritten, errors have been eliminated and new material has been included. The book will be immensely useful to graduate students and researchers in numerical analysis and scientific computing, and to scientists in the fields mentioned above.
The aim of the book is to present the state of the art of the theory of symmetric (Hermitian) matrix Riccati equations and to contribute to the development of the theory of non-symmetric Riccati equations as well as to certain classes of coupled and generalized Riccati equations occurring in differential games and stochastic control. The volume offers a complete treatment of generalized and coupled Riccati equations. It deals with differential, discrete-time, algebraic or periodic symmetric and non-symmetric equations, with special emphasis on those equations appearing in control and systems theory. Extensions to Riccati theory allow to tackle robust control problems in a unified approach. The book is intended to make available classical and recent results to engineers and mathematicians alike. It is accessible to graduate students in mathematics, applied mathematics, control engineering, physics or economics. Researchers working in any of the fields where Riccati equations are used can find the main results with the proper mathematical background.
di?erential operators in particular will be developed hand in glove with appli- tions andcomputation inthe physical,biologicaland medicalsciences.This theme will play an important role in the forthcoming volumes on pseudo-di?erential - erators originating from IGPDO. The Editors OperatorTheory: Advances andApplications,Vol.189, 1-14 c 2008Birkh. auserVerlagBasel/Switzerland Phase-Space Weyl Calculus and Global Hypoellipticity of a Class of Degenerate Elliptic Partial Di?erential Operators Maurice de Gosson Abstract. In a recent series of papers M.W. Wong has studied a degenerate elliptic partial di?erential operator related to the Heisenberg group. It turns out that Wong's example is best understood when replaced in the context of the phase-space Weyl calculus we have developed in previous work; this - proach highlights the relationship of Wong's constructions with the quantum mechanics of charged particles in a uniform magnetic ?eld. Using Shubin's classes of pseudodi?erential symbols we prove global hypoellipticity results for arbitrary phase-space operators arising from elliptic operators on con- uration space. Mathematics Subject Classi?cation (2000). Primary 47F30; Secondary 35B65, 46F05. Keywords. Degenerate elliptic operators, hypoellipticity, phase space Weyl calculus, Shubin symbols.
This book deals with algorithms for the solution of linear systems of algebraic equations with large-scale sparse matrices, with a focus on problems that are obtained after discretization of partial differential equations using finite element methods. The authors provide a systematic presentation of the recent advances in robust algebraic multilevel methods and algorithms, e.g., the preconditioned conjugate gradient method, algebraic multilevel iteration (AMLI) preconditioners, the classical algebraic multigrid (AMG) method and its recent modifications, namely AMG using element interpolation (AMGe) and AMG based on smoothed aggregation. The first six chapters can serve as a short introductory course on the theory of AMLI methods and algorithms. The next part of the monograph is devoted to more advanced topics, including the description of new generation AMG methods, AMLI methods for discontinuous Galerkin systems, looking-free algorithms for coupled problems etc., ending with important practical issues of implementation and challenging applications. This second part is addressed to some more experienced students and practitioners and can be used to complete a more advanced course on robust AMLI and AMG methods and their efficient application. This book is intended for mathematicians, engineers, natural scientists etc.
The book is devoted to the foundations of the theory of boundary-value problems for various classes of systems of differential-operator equations whose linear part is represented by Fredholm operators of the general form. A common point of view on numerous classes of problems that were traditionally studied independently of each other enables us to study, in a natural way, the theory of these problems, to supplement and improve the existing results, and in certain cases, study some of these problems for the first time. With the help of the technique of generalized inverse operators, the Vishik- Lyusternik method, and iterative methods, we perform a detailed investigation of the problems of existence, bifurcations, and branching of the solutions of linear and nonlinear boundary-value problems for various classes of differential-operator systems and propose new procedures for their construction. For more than 11 years that have passed since the appearance of the first edition of the monograph, numerous new publications of the authors in this direction have appeared. In this connection, it became necessary to make some additions and corrections to the previous extensively cited edition, which is still of signifi cant interest for the researchers. For researchers, teachers, post-graduate students, and students of physical and mathematical departments of universities. Contents: Preliminary Information Generalized Inverse Operators in Banach Spaces Pseudoinverse Operators in Hilbert Spaces Boundary-Value Problems for Operator Equations Boundary-Value Problems for Systems of Ordinary Differential Equations Impulsive Boundary-Value Problems for Systems of Ordinary Differential Equations Solutions of Differential and Difference Systems Bounded on the Entire Real Axis
This book presents the proceedings of a conference on dynamical systems held in honor of Jurgen Scheurle in January 2012. Through both original research papers and survey articles leading experts in the field offer overviews of the current state of the theory and its applications to mechanics and physics. In particular, the following aspects of the theory of dynamical systems are covered: - Stability and bifurcation - Geometric mechanics and control theory - Invariant manifolds, attractors and chaos - Fluid mechanics and elasticity - Perturbations and multiscale problems - Hamiltonian dynamics and KAM theory Researchers and graduate students in dynamical systems and related fields, including engineering, will benefit from the articles presented in this volume.
The quantitative and qualitative study of the physical world makes use of many mathematical models governed by a great diversity of ordinary, partial differential, integral, and integro-differential equations. An essential step in such investigations is the solution of these types of equations, which sometimes can be performed analytically, while at other times only numerically. This edited, self-contained volume presents a series of state-of-the-art analytic and numerical methods of solution constructed for important problems arising in science and engineering, all based on the powerful operation of (exact or approximate) integration. The book, consisting of twenty seven selected chapters presented by well-known specialists in the field, is an outgrowth of the Eighth International Conference on Integral Methods in Science and Engineering, held August 2a "4, 2004, in Orlando, FL. Contributors cover a wide variety of topics, from the theoretical development of boundary integral methods to the application of integration-based analytic and numerical techniques that include integral equations, finite and boundary elements, conservation laws, hybrid approaches, and other procedures. The volume may be used as a reference guide and a practical resource. It is suitable for researchers and practitioners in applied mathematics, physics, and mechanical and electrical engineering, as well as graduate students in these disciplines.
The 3rd International ISAAC Congress took place from August 20 to 25, 2001 in Berlin, Germany, supported by the German Research Foundation (DFG), the city of Berlin through Investitionsbank Berlin and the Freie Universitiit Berlin. 10 ISAAC Awards were presented to young researchers in analysis its applications and computation from all over the world on the basis of financial support from Siemens, Daimler Crysler, Motorola and the Berlin Mathematical Society and book gifts from Birkhauser Verlag, Elsevier, Kluwer Academic Publisher, Springer Verlag and World Scientific. The ISAAC is grateful to all these institutions, firms and publishers for their support. Due to the support from DFG and from Investitions bank Berlin many of the 362 registrated participants could be financially supported. Unfortunately the financial supports were granted too late to reach more people from former SU as the procedere for visa is still more than cumbersome and embassies are not at all flexible. Hence, a big part of the financial support could not be used and had to be returned. The 10 plenary lectures were 1. Antoniou, 1. Prigogine (Intern. Solvay Inst. Phys. Chem., Brussels): Irreversibility and the probabilistic description of unstable evolutions beyond the Hilbert space framework (read by 1. Antoniou), N.S. Bakhvalov, M.E. Eglit (Math. Mech. Dept., Lomonosov State Univ."
The book presents a systematic and compact treatment of the
qualitative theory of half-linear
Evolution equations of hyperbolic or more general p-evolution type form an active field of current research. This volume aims to collect some recent advances in the area in order to allow a quick overview of ongoing research. The contributors are first rate mathematicians. This collection of research papers is centred around parametrix constructions and microlocal analysis; asymptotic constructions of solutions; energy and dispersive estimates; and associated spectral transforms. Applications concerning elasticity and general relativity complement the volume. The book gives an overview of a variety of ongoing current research in the field and, therefore, allows researchers as well as students to grasp new aspects and broaden their understanding of the area. "
In inverse problems, the aim is to obtain, via a mathematical model, information on quantities that are not directly observable but rather depend on other observable quantities. Inverse problems are encountered in such diverse areas of application as medical imaging, remote sensing, material testing, geosciences and financing. It has become evident that new ideas coming from differential geometry and modern analysis are needed to tackle even some of the most classical inverse problems. This book contains a collection of presentations, written by leading specialists, aiming to give the reader up-to-date tools for understanding the current developments in the field.
This monograph explores nonoscillation and existence of positive solutions for functional differential equations and describes their applications to maximum principles, boundary value problems and stability of these equations. In view of this objective the volume considers a wide class of equations including, scalar equations and systems of different types, equations with variable types of delays and equations with variable deviations of the argument. Each chapter includes an introduction and preliminaries, thus making it complete. Appendices at the end of the book cover reference material. Nonoscillation Theory of Functional Differential Equations with Applications is addressed to a wide audience of researchers in mathematics and practitioners.
The analysis of singular perturbed di?erential equations began early in the twentieth century, when approximate solutions were constructed from asy- totic expansions. (Preliminary attempts appear in the nineteenth century - see[vD94].)Thistechniquehas?ourishedsincethemid-1960sanditsprincipal ideas and methods are described in several textbooks; nevertheless, asy- totic expansions may be impossible to construct or may fail to simplify the given problem and then numerical approximations are often the only option. Thesystematicstudyofnumericalmethodsforsingularperturbationpr- lems started somewhat later - in the 1970s. From this time onwards the - search frontier has steadily expanded, but the exposition of new developments in the analysis of these numerical methods has not received its due attention. The ?rst textbook that concentrated on this analysis was [DMS80], which collected various results for ordinary di?erential equations. But after 1980 no further textbook appeared until 1996, when three books were published: Miller et al. [MOS96], which specializes in upwind ?nite di?erence methods on Shishkin meshes, Morton's book [Mor96], which is a general introduction to numerical methods for convection-di? usion problems with an emphasis on the cell-vertex ?nite volume method, and [RST96], the ?rst edition of the present book. Nevertheless many methods and techniques that are important today, especially for partial di?erential equations, were developed after 1996.
The Mathematical Elasticity set contains three self-contained volumes that together provide the only modern treatise on elasticity. They introduce contemporary research on three-dimensional elasticity, the theory of plates, and the theory of shells. Each volume contains proofs, detailed surveys of all mathematical prerequisites, and many problems for teaching and self-study. An extended preface and extensive bibliography have been added to each volume to highlight the progress that has been made since the original publication. The first book, Three-Dimensional Elasticity, covers the modeling and mathematical analysis of nonlinear three-dimensional elasticity. In volume two, Theory of Plates, asymptotic methods provide a rigorous mathematical justification of the classical two-dimensional linear plate and shallow shell theories. The objective of Theory of Shells, the final volume, is to show how asymptotic methods provide a rigorous mathematical justification of the classical two-dimensional linear shell theories: membrane, generalized membrane, and flexural. These classic textbooks are for advanced undergraduates, first-year graduate students, and researchers in pure or applied mathematics or continuum mechanics. They are appropriate for courses in mathematical elasticity, theory of plates and shells, continuum mechanics, computational mechanics, and applied mathematics in general.
This book provides a comprehensive introduction to the theory of ordinary differential equations with a focus on mechanics and dynamical systems as important applications of the theory. The text is written to be used in the traditional way or in a more applied way. In addition to its use in a traditional one or two semester graduate course in mathematics, the book is organized to be used for interdisciplinary courses in applied mathematics, physics, and engineering.
This work introduces readers to the topic of maximal regularity for difference equations. The authors systematically present the method of maximal regularity, outlining basic linear difference equations along with relevant results. They address recent advances in the field, as well as basic semi group and cosine operator theories in the discrete setting. The authors also identify some open problems that readers may wish to take up for further research. This book is intended for graduate students and researchers in the area of difference equations, particularly those with advance knowledge of and interest in functional analysis.
Almost Automorphic and Almost Periodic Functions in Abstract Spaces introduces and develops the theory of almost automorphic vector-valued functions in Bochner's sense and the study of almost periodic functions in a locally convex space in a homogenous and unified manner. It also applies the results obtained to study almost automorphic solutions of abstract differential equations, expanding the core topics with a plethora of groundbreaking new results and applications. For the sake of clarity, and to spare the reader unnecessary technical hurdles, the concepts are studied using classical methods of functional analysis.
Ne as' book "Direct Methods in the Theory of Elliptic Equations," published 1967 in French, has become a standard reference for the mathematical theory of linear elliptic equations and systems. This English edition, translated by G. Tronel and A. Kufner, presents Ne as' work essentially in the form it was published in 1967. It gives a timeless and in some sense definitive treatment of a number issues in variational methods for elliptic systems and higher order equations. The text is recommended to graduate students of partial differential equations, postdoctoral associates in Analysis, and scientists working with linear elliptic systems. In fact, any researcher using the theory of elliptic systems will benefit from having the book in his library. The volume gives a self-contained presentation of the elliptic theory based on the "direct method," also known as the variational method. Due to its universality and close connections to numerical approximations, the variational method has become one of the most important approaches to the elliptic theory. The method does not rely on the maximum principle or other special properties of the scalar second order elliptic equations, and it is ideally suited for handling systems of equations of arbitrary order. The prototypical examples of equations covered by the theory are, in addition to the standard Laplace equation, Lame's system of linear elasticity and the biharmonic equation (both with variable coefficients, of course). General ellipticity conditions are discussed and most of the natural boundary condition is covered. The necessary foundations of the function space theory are explained along the way, in an arguably optimal manner. The standard boundary regularity requirement on the domains is the Lipschitz continuity of the boundary, which "when going beyond the scalar equations of second order" turns out to be a very natural class. These choices reflect the author's opinion that the Lame system and the biharmonic equations are just as important as the Laplace equation, and that the class of the domains with the Lipschitz continuous boundary (as opposed to smooth domains) is the most natural class of domains to consider in connection with these equations and their applications."
This book discusses the latest advances in algorithms for symbolic summation, factorization, symbolic-numeric linear algebra and linear functional equations. It presents a collection of papers on original research topics from the Waterloo Workshop on Computer Algebra (WWCA-2016), a satellite workshop of the International Symposium on Symbolic and Algebraic Computation (ISSAC'2016), which was held at Wilfrid Laurier University (Waterloo, Ontario, Canada) on July 23-24, 2016. This workshop and the resulting book celebrate the 70th birthday of Sergei Abramov (Dorodnicyn Computing Centre of the Russian Academy of Sciences, Moscow), whose highly regarded and inspirational contributions to symbolic methods have become a crucial benchmark of computer algebra and have been broadly adopted by many Computer Algebra systems. |
![]() ![]() You may like...
Complexity / Simplicity - Moments in…
Sarah Cardwell, Jonathan Bignell, …
Hardcover
R2,500
Discovery Miles 25 000
Applications of Computational Tools in…
Andreas Oechsner, Holm Altenbach
Hardcover
|