![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Differential equations
This and the previous volume of the OT series contain the proceedings of the Workshop on Operator Theory and its Applications, IWOTA 95, which was held at the University of Regensburg, Germany, July 31 to August 4, 1995. It was the eigth workshop of this kind. Following is a list of the seven previous workshops with reference to their proceedings: 1981 Operator Theory (Santa Monica, California, USA) 1983 Applications of Linear Operator Theory to Systems and Networks (Rehovot, Israel), OT 12 1985 Operator Theory and its Applications (Amsterdam, The Netherlands), OT 19 1987 Operator Theory and Functional Analysis (Mesa, Arizona, USA), OT 35 1989 Matrix and Operator Theory (Rotterdam, The Netherlands), OT 50 1991 Operator Theory and Complex Analysis (Sapporo, Japan), OT 59 1993 Operator Theory and Boundary Eigenvalue Problems (Vienna, Austria), OT 80 IWOTA 95 offered a rich programme on a wide range of latest developments in operator theory and its applications. The programme consisted of 6 invited plenary lectures, 54 invited special topic lectures and more than 100 invited session talks. About 180 participants from 25 countries attended the workshop, more than a third came from Eastern Europe. The conference covered different aspects of linear and nonlinear spectral prob lems, starting with problems for abstract operators up to spectral theory of ordi nary and partial differential operators, pseudodifferential operators, and integral operators. The workshop was also focussed on operator theory in spaces with indefinite metric, operator functions, interpolation and extension problems."
This book presents important recent developments in mathematical and computational methods used in impedance imaging and the theory of composite materials. By augmenting the theory with interesting practical examples and numerical illustrations, the exposition brings simplicity to the advanced material. An introductory chapter covers the necessary basics. An extensive bibliography and open problems at the end of each chapter enhance the text.
Presenting the latest findings in topics from across the mathematical spectrum, this volume includes results in pure mathematics along with a range of new advances and novel applications to other fields such as probability, statistics, biology, and computer science. All contributions feature authors who attended the Association for Women in Mathematics Research Symposium in 2015: this conference, the third in a series of biennial conferences organized by the Association, attracted over 330 participants and showcased the research of women mathematicians from academia, industry, and government.
This collection of original articles and surveys addresses the recent advances in linear and nonlinear aspects of the theory of partial differential equations. The key topics include operators as "sums of squares" of real and complex vector fields, nonlinear evolution equations, local solvability, and hyperbolic questions.
This book is aimed to be both a textbook for graduate students and a starting point for applicationsscientists. It is designedto show how to implementspectral methods to approximate the solutions of partial differential equations. It presents a syst- atic development of the fundamental algorithms needed to write spectral methods codes to solve basic problems of mathematical physics, including steady potentials, transport, and wave propagation. As such, it is meant to supplement, not replace, more general monographs on spectral methods like the recently updated "Spectral Methods: Fundamentals in Single Domains" and "Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics" by Canuto, Hussaini, Quarteroni and Zang, which provide detailed surveys of the variety of methods, their performance and theory. I was motivated by comments that I have heard over the years that spectral me- ods are "too hard to implement." I hope to dispel this view-or at least to remove the "too." Although it is true that a spectral code is harder to hack together than a s- ple ?nite difference code (at least a low order ?nite difference method on a square domain), I show that only a few fundamental algorithms for interpolation, differen- ation, FFT and quadrature-the subjects of basic numerical methods courses-form the building blocks of any spectral code, even for problems in complex geometries. Ipresentthealgorithmsnotonlytosolveproblemsin1D, but2Daswell, toshowthe ?exibility of spectral methods and to make as straightforward as possible the tr- sition from simple, exploratory programs that illustrate the behavior of the methods to application programs.
This book introduces and analyzes the multigrid approach for the numerical solution of large sparse linear systems arising from the discretization of elliptic partial differential equations. Special attention is given to the powerful matrix-based-multigrid approach, which is particularly useful for problems with variable coefficients and nonsymmetric and indefinite problems. This approach applies not only to model problems on rectangular grids but also to more realistic applications with complicated grids and domains and discontinuous coefficients. Matrix-Based Multigrid can be used as a textbook in courses in numerical analysis, numerical linear algebra, and numerical PDEs at the advanced undergraduate and graduate levels in computer science, math, and applied math departments. The theory is written in simple algebraic terms and therefore requires preliminary knowledge in basic linear algebra and calculus only. Because it is self contained and includes useful exercises, the book is also suitable for self study by research students, researchers, engineers, and others interested in the numerical solution of partial differential equations.
This introduction to applied nonlinear dynamics and chaos places emphasis on teaching the techniques and ideas that will enable students to take specific dynamical systems and obtain some quantitative information about their behavior. The new edition has been updated and extended throughout, and contains a detailed glossary of terms. From the reviews: "Will serve as one of the most eminent introductions to the geometric theory of dynamical systems." --Monatshefte f r Mathematik
This and the next volume of the OT series contain the proceedings of the Work shop on Operator Theory and its Applications, IWOTA 95, which was held at the University of Regensburg, Germany, July 31 to August 4, 1995. It was the eigth workshop of this kind. Following is a list of the seven previous workshops with reference to their proceedings: 1981 Operator Theory (Santa Monica, California, USA) 1983 Applications of Linear Operator Theory to Systems and Networks (Rehovot, Israel), OT 12 1985 Operator Theory and its Applications (Amsterdam, The Netherlands), OT 19 1987 Operator Theory and Functional Analysis (Mesa, Arizona, USA), OT 35 1989 Matrix and Operator Theory (Rotterdam, The Netherlands), OT 50 1991 Operator Theory and Complex Analysis (Sapporo, Japan), OT 59 1993 Operator Theory and Boundary Eigenvalue Problems (Vienna, Austria), OT 80 IWOTA 95 offered a rich programme on a wide range of latest developments in operator theory and its applications. The programme consisted of 6 invited plenary lectures, 54 invited special topic lectures and more than 100 invited session talks. About 180 participants from 25 countries attended the workshop, more than a third came from Eastern Europe. The conference covered different aspects of linear and nonlinear spectral prob lems, starting with problems for abstract operators up to spectral theory of ordi nary and partial differential operators, pseudodifferential operators, and integral operators. The workshop was also focussed on operator theory in spaces with indefinite metric, operator functions, interpolation and extension problems.
The aim of this proceeding is addressed to present recent developments of the mathematical research on the Navier-Stokes equations, the Euler equations and other related equations. In particular, we are interested in such problems as: 1) existence, uniqueness and regularity of weak solutions2) stability and its asymptotic behavior of the rest motion and the steady state3) singularity and blow-up of weak and strong solutions4) vorticity and energy conservation5) fluid motions around the rotating axis or outside of the rotating body6) free boundary problems7) maximal regularity theorem and other abstract theorems for mathematical fluid mechanics.
This monograph develops a generalised energy flow theory to investigate non-linear dynamical systems governed by ordinary differential equations in phase space and often met in various science and engineering fields. Important nonlinear phenomena such as, stabilities, periodical orbits, bifurcations and chaos are tack-led and the corresponding energy flow behaviors are revealed using the proposed energy flow approach. As examples, the common interested nonlinear dynamical systems, such as, Duffing's oscillator, Van der Pol's equation, Lorenz attractor, Roessler one and SD oscillator, etc, are discussed. This monograph lights a new energy flow research direction for nonlinear dynamics. A generalised Matlab code with User Manuel is provided for readers to conduct the energy flow analysis of their nonlinear dynamical systems. Throughout the monograph the author continuously returns to some examples in each chapter to illustrate the applications of the discussed theory and approaches. The book can be used as an undergraduate or graduate textbook or a comprehensive source for scientists, researchers and engineers, providing the statement of the art on energy flow or power flow theory and methods.
This two-volume work mainly addresses undergraduate and graduate students in the engineering sciences and applied mathematics. Hence it focuses on partial differential equations with a strong emphasis on illustrating important applications in mechanics. The presentation considers the general derivation of partial differential equations and the formulation of consistent boundary and initial conditions required to develop well-posed mathematical statements of problems in mechanics. The worked examples within the text and problem sets at the end of each chapter highlight engineering applications. The mathematical developments include a complete discussion of uniqueness theorems and, where relevant, a discussion of maximum and miniumum principles. The primary aim of these volumes is to guide the student to pose and model engineering problems, in a mathematically correct manner, within the context of the theory of partial differential equations in mechanics.
This monograph is the first to provide a comprehensive, self-contained and rigorous presentation of some of the most powerful preconditioning methods for solving finite element equations in a common block-matrix factorization framework. Topics covered include the classical incomplete block-factorization preconditioners and the most efficient methods such as the multigrid, algebraic multigrid, and domain decomposition. Additionally, the author discusses preconditioning of saddle-point, nonsymmetric and indefinite problems, as well as preconditioning of certain nonlinear and quadratic constrained minimization problems that typically arise in contact mechanics. The book presents analytical as well as algorithmic aspects. This text can serve as an indispensable reference for researchers, graduate students, and practitioners. It can also be used as a supplementary text for a topics course in preconditioning and/or multigrid methods at the graduate level.
This book discusses the latest advances in algorithms for symbolic summation, factorization, symbolic-numeric linear algebra and linear functional equations. It presents a collection of papers on original research topics from the Waterloo Workshop on Computer Algebra (WWCA-2016), a satellite workshop of the International Symposium on Symbolic and Algebraic Computation (ISSAC'2016), which was held at Wilfrid Laurier University (Waterloo, Ontario, Canada) on July 23-24, 2016. This workshop and the resulting book celebrate the 70th birthday of Sergei Abramov (Dorodnicyn Computing Centre of the Russian Academy of Sciences, Moscow), whose highly regarded and inspirational contributions to symbolic methods have become a crucial benchmark of computer algebra and have been broadly adopted by many Computer Algebra systems.
This two-volume work mainly addresses undergraduate and gra- duate students in the engineering sciences and applied ma- thematics. Hence it focuses on partial differential equati- ons with a strong emphasis on illustrating important appli- cations in mechanics. The presentation considers the general derivation of partial differential equations and the formu- lation of consistent boundary and initial conditions requi- red to develop well-posed mathematical statements of pro- blems in mechanics. The worked examples within the text and problem sets at the end of each chapter highlight enginee- ring applications. The mathematical developments include a complete discussion of uniqueness theorems and, where rele- vant, a discussion of maximum and miniumum principles. The primary aim of these volumes is to guide the student to pose and model engineering problems, in a mathematically correct manner, within the context of the theory of partial differential equations in mechanics.
This Festschrift contains five research surveys and thirty-four shorter contributions by participants of the conference ''Stochastic Partial Differential Equations and Related Fields'' hosted by the Faculty of Mathematics at Bielefeld University, October 10-14, 2016. The conference, attended by more than 140 participants, including PostDocs and PhD students, was held both to honor Michael Roeckner's contributions to the field on the occasion of his 60th birthday and to bring together leading scientists and young researchers to present the current state of the art and promising future developments. Each article introduces a well-described field related to Stochastic Partial Differential Equations and Stochastic Analysis in general. In particular, the longer surveys focus on Dirichlet forms and Potential theory, the analysis of Kolmogorov operators, Fokker-Planck equations in Hilbert spaces, the theory of variational solutions to stochastic partial differential equations, singular stochastic partial differential equations and their applications in mathematical physics, as well as on the theory of regularity structures and paracontrolled distributions. The numerous research surveys make the volume especially useful for graduate students and researchers who wish to start work in the above-mentioned areas, or who want to be informed about the current state of the art.
Infotext]((Kurztext))These are the proceedings of the 7th International Conference on Hyperbolic Problems, held in Zurich in February 1998. The speakers and contributors have been rigorously selected and present the state of the art in this field. The articles, both theoretical and numerical, encompass a wide range of applications, such as nonlinear waves in solids, various computational fluid dynamics from small-scale combustion to relativistic astrophysical problems, multiphase phenomena and geometrical optics. ((Volltext))These proceedings contain, in two volumes, approximately one hundred papers presented at the conference on hyperbolic problems, which has focused to a large extent on the laws of nonlinear hyperbolic conservation. Two-fifths of the papers are devoted to mathematical aspects such as global existence, uniqueness, asymptotic behavior such as large time stability, stability and instabilities of waves and structures, various limits of the solution, the Riemann problem and so on. Roughly the same number of articles are devoted to numerical analysis, for example stability and convergence of numerical schemes, as well as schemes with special desired properties such as shock capturing, interface fitting and high-order approximations to multidimensional systems. The results in these contributions, both theoretical and numerical, encompass a wide range of applications such as nonlinear waves in solids, various computational fluid dynamics from small-scale combustion to relativistic astrophysical problems, multiphase phenomena and geometrical optics."
The linear theory of oscillations traditionally operates with frequency representa- tions based on the concepts of a transfer function and a frequency response. The universality of the critria of Nyquist and Mikhailov and the simplicity and obvi- ousness of the application of frequency and amplitude - frequency characteristics in analysing forced linear oscillations greatly encouraged the development of practi- cally important nonlinear theories based on various forms of the harmonic balance hypothesis [303]. Therefore mathematically rigorous frequency methods of investi- gating nonlinear systems, which appeared in the 60s, also began to influence many areas of nonlinear theory of oscillations. First in this sphere of influence was a wide range of problems connected with multidimensional analogues of the famous van der Pol equation describing auto- oscillations of generators of various radiotechnical devices. Such analogues have as a rule a unique unstable stationary point in the phase space and are Levinson dis- sipative. One of the pioneering works in this field, which started the investigation of a three-dimensional analogue of the van der Pol equation, was K. O. Friedrichs's paper [123]. The author suggested a scheme for constructing a positively invariant set homeomorphic to a torus, by means of which the existence of non-trivial periodic solutions was established. That scheme was then developed and improved for dif- ferent classes of multidimensional dynamical systems [131, 132, 297, 317, 334, 357, 358]. The method of Poincare mapping [12, 13, 17] in piecewise linear systems was another intensively developed direction.
A combinatorial method is developed in this book to explore the mysteries of chaos, which has became a topic of science since 1975. Using tools from theoretical computer science, formal languages and automata, the complexity of symbolic behaviors of dynamical systems is classified and analysed thoroughly. This book is mainly devoted to explanation of this method and apply it to one-dimensional dynamical systems, including the circle and interval maps, which are typical in exhibiting complex behavior through simple iterated calculations. The knowledge for reading it is self-contained in the book.
The approximation of a continuous function by either an algebraic polynomial, a trigonometric polynomial, or a spline, is an important issue in application areas like computer-aided geometric design and signal analysis. This book is an introduction to the mathematical analysis of such approximation, and, with the prerequisites of only calculus and linear algebra, the material is targeted at senior undergraduate level, with a treatment that is both rigorous and self-contained. The topics include polynomial interpolation; Bernstein polynomials and the Weierstrass theorem; best approximations in the general setting of normed linear spaces and inner product spaces; best uniform polynomial approximation; orthogonal polynomials; Newton-Cotes, Gauss and Clenshaw-Curtis quadrature; the Euler-Maclaurin formula; approximation of periodic functions; the uniform convergence of Fourier series; spline approximation, with an extensive treatment of local spline interpolation, and its application in quadrature. Exercises are provided at the end of each chapter
Introduction to Dynamical Systems and Geometric Mechanics provides a comprehensive tour of two fields that are intimately entwined: dynamical systems is the study of the behavior of physical systems that may be described by a set of nonlinear first-order ordinary differential equations in Euclidean space, whereas geometric mechanics explore similar systems that instead evolve on differentiable manifolds. The first part discusses the linearization and stability of trajectories and fixed points, invariant manifold theory, periodic orbits, Poincare maps, Floquet theory, the Poincare-Bendixson theorem, bifurcations, and chaos. The second part of the book begins with a self-contained chapter on differential geometry that introduces notions of manifolds, mappings, vector fields, the Jacobi-Lie bracket, and differential forms.
This work is based on the lecture notes of the course M742: Topics in Partial Dif- ferential Equations, which I taught in the Spring semester of 1997 at Indiana Univer- sity. My main intention in this course was to give a concise introduction to solving two-dimensional compressibleEuler equations with Riemann data, which are special Cauchy data. This book covers new theoretical developments in the field over the past decade or so. Necessary knowledge of one-dimensional Riemann problems is reviewed and some popularnumerical schemes are presented. Multi-dimensional conservation laws are more physical and the time has come to study them. The theory onbasicone-dimensional conservation laws isfairly complete providing solid foundation for multi-dimensional problems. The rich theory on ellip- tic and parabolic partial differential equations has great potential in applications to multi-dimensional conservation laws. And faster computers make itpossible to reveal numerically more details for theoretical pursuitin multi-dimensional problems. Overview and highlights Chapter 1is an overview ofthe issues that concern us inthisbook. It lists theEulersystemandrelatedmodelssuch as theunsteady transonic small disturbance, pressure-gradient, and pressureless systems. Itdescribes Mach re- flection and the von Neumann paradox. In Chapters 2-4, which form Part I of the book, we briefly present the theory of one-dimensional conservation laws, which in- cludes solutions to the Riemann problems for the Euler system and general strictly hyperbolic and genuinely nonlinearsystems, Glimm's scheme, and large-time asymp- toties.
This book publishes a collection of original scientific research articles that address the state-of-art in using partial differential equations for image and signal processing. Coverage includes: level set methods for image segmentation and construction, denoising techniques, digital image inpainting, image dejittering, image registration, and fast numerical algorithms for solving these problems.
This book presents the state of the art in tackling differential equations using advanced methods and software tools of symbolic computation. It focuses on the symbolic-computational aspects of three kinds of fundamental problems in differential equations: transforming the equations, solving the equations, and studying the structure and properties of their solutions. The 20 chapters are written by leading experts and are structured into three parts. The book is worth reading for researchers and students working on this interdisciplinary subject but may also serve as a valuable reference for everyone interested in differential equations, symbolic computation, and their interaction.
With contributions by leading experts in geometric analysis, this volume is documenting the material presented in the John H. Barrett Memorial Lectures held at the University of Tennessee, Knoxville, on May 29 - June 1, 2018. The central topic of the 2018 lectures was mean curvature flow, and the material in this volume covers all recent developments in this vibrant area that combines partial differential equations with differential geometry.
This collection of original articles and surveys, emerging from a 2011 conference in Bertinoro, Italy, addresses recent advances in linear and nonlinear aspects of the theory of partial differential equations (PDEs). Phase space analysis methods, also known as microlocal analysis, have continued to yield striking results over the past years and are now one of the main tools of investigation of PDEs. Their role in many applications to physics, including quantum and spectral theory, is equally important. Key topics addressed in this volume include: *general theory of pseudodifferential operators *Hardy-type inequalities *linear and non-linear hyperbolic equations and systems *Schroedinger equations *water-wave equations *Euler-Poisson systems *Navier-Stokes equations *heat and parabolic equations Various levels of graduate students, along with researchers in PDEs and related fields, will find this book to be an excellent resource. Contributors T. Alazard P.I. Naumkin J.-M. Bony F. Nicola N. Burq T. Nishitani C. Cazacu T. Okaji J.-Y. Chemin M. Paicu E. Cordero A. Parmeggiani R. Danchin V. Petkov I. Gallagher M. Reissig T. Gramchev L. Robbiano N. Hayashi L. Rodino J. Huang M. Ruzhanky D. Lannes J.-C. Saut F. Linares N. Visciglia P.B. Mucha P. Zhang C. Mullaert E. Zuazua T. Narazaki C. Zuily |
You may like...
Test Generation of Crosstalk Delay…
S. Jayanthy, M.C. Bhuvaneswari
Hardcover
R3,785
Discovery Miles 37 850
Handbook of Generalized Convexity and…
Nicolas Hadjisavvas, Sandor Komlosi, …
Hardcover
R5,519
Discovery Miles 55 190
IT Security Management - IT Securiteers…
Alberto Partida, Diego Andina
Hardcover
R2,801
Discovery Miles 28 010
|