Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Differential equations
This volume gathers contributions from participants of the Introductory School and the IHP thematic quarter on Numerical Methods for PDE, held in 2016 in Cargese (Corsica) and Paris, providing an opportunity to disseminate the latest results and envisage fresh challenges in traditional and new application fields. Numerical analysis applied to the approximate solution of PDEs is a key discipline in applied mathematics, and over the last few years, several new paradigms have appeared, leading to entire new families of discretization methods and solution algorithms. This book is intended for researchers in the field.
This book features papers presented during a special session on dynamical systems, mathematical physics, and partial differential equations. Research articles are devoted to broad complex systems and models such as qualitative theory of dynamical systems, theory of games, circle diffeomorphisms, piecewise smooth circle maps, nonlinear parabolic systems, quadtratic dynamical systems, billiards, and intermittent maps. Focusing on a variety of topics from dynamical properties to stochastic properties of dynamical systems, this volume includes discussion on discrete-numerical tracking, conjugation between two critical circle maps, invariance principles, and the central limit theorem. Applications to game theory and networks are also included. Graduate students and researchers interested in complex systems, differential equations, dynamical systems, functional analysis, and mathematical physics will find this book useful for their studies. The special session was part of the second USA-Uzbekistan Conference on Analysis and Mathematical Physics held on August 8-12, 2017 at Urgench State University (Uzbekistan). The conference encouraged communication and future collaboration among U.S. mathematicians and their counterparts in Uzbekistan and other countries. Main themes included algebra and functional analysis, dynamical systems, mathematical physics and partial differential equations, probability theory and mathematical statistics, and pluripotential theory. A number of significant, recently established results were disseminated at the conference's scheduled plenary talks, while invited talks presented a broad spectrum of findings in several sessions. Based on a different session from the conference, Algebra, Complex Analysis, and Pluripotential Theory is also published in the Springer Proceedings in Mathematics & Statistics Series.
This book treats dynamic stability of structures under nonconservative forces. it is not a mathematics-based, but rather a dynamics-phenomena-oriented monograph, written with a full experimental background. Starting with fundamentals on stability of columns under nonconservative forces, it then deals with the divergence of Euler's column under a dead (conservative) loading from a view point of dynamic stability. Three experiments with cantilevered columns under a rocket-based follower force are described to present the verifiability of nonconservative problems of structural stability. Dynamic stability of columns under pulsating forces is discussed through analog experiments, and by analytical and experimental procedures together with related theories. Throughout the volume the authors retain a good balance between theory and experiments on dynamic stability of columns under nonconservative loading, offering a new window to dynamic stability of structures, promoting student- and scientist-friendly experiments.
In this book the authors show that it is possible to construct efficient computationally oriented models of multi-parameter complex systems by using asymptotic methods, which can, owing to their simplicity, be directly used for controlling processes arising in connection with composite material systems. The book focuses on this asymptotic-modeling-based approach because it allows us to define the most important out of numerous parameters describing the system, or, in other words, the asymptotic methods allow us to estimate the sensitivity of the system parameters. Further, the book addresses the construction of nonlocal and higher-order homogenized models. Local fields on the micro-level and the influence of so-called non-ideal contact between the matrix and inclusions are modeled and investigated. The book then studies composites with non-regular structure and cluster type composite conductivity, and analyzes edge effects in fiber composite materials. Transition of load from a fiber to a matrix for elastic and viscoelastic composites, various types of fiber composite fractures, and buckling of fibers in fiber-reinforced composites is also investigated. Last but not least, the book includes studies on perforated membranes, plates, and shells, as well as the asymptotic modeling of imperfect nonlinear interfaces.
Numerical partial differential equations (PDEs) are an important part of numerical simulation, the third component of the modern methodology for science and engineering, besides the traditional theory and experiment. This volume contains papers that originated with the collaborative research of the teams that participated in the IMA Workshop for Women in Applied Mathematics: Numerical Partial Differential Equations and Scientific Computing in August 2014.
This volume presents the peer-reviewed proceedings of the international conference Imaging, Vision and Learning Based on Optimization and PDEs (IVLOPDE), held in Bergen, Norway, in August/September 2016. The contributions cover state-of-the-art research on mathematical techniques for image processing, computer vision and machine learning based on optimization and partial differential equations (PDEs). It has become an established paradigm to formulate problems within image processing and computer vision as PDEs, variational problems or finite dimensional optimization problems. This compact yet expressive framework makes it possible to incorporate a range of desired properties of the solutions and to design algorithms based on well-founded mathematical theory. A growing body of research has also approached more general problems within data analysis and machine learning from the same perspective, and demonstrated the advantages over earlier, more established algorithms. This volume will appeal to all mathematicians and computer scientists interested in novel techniques and analytical results for optimization, variational models and PDEs, together with experimental results on applications ranging from early image formation to high-level image and data analysis.
This book focuses on the vector Allen-Cahn equation, which models coexistence of three or more phases and is related to Plateau complexes - non-orientable objects with a stratified structure. The minimal solutions of the vector equation exhibit an analogous structure not present in the scalar Allen-Cahn equation, which models coexistence of two phases and is related to minimal surfaces. The 1978 De Giorgi conjecture for the scalar problem was settled in a series of papers: Ghoussoub and Gui (2d), Ambrosio and Cabre (3d), Savin (up to 8d), and del Pino, Kowalczyk and Wei (counterexample for 9d and above). This book extends, in various ways, the Caffarelli-Cordoba density estimates that played a major role in Savin's proof. It also introduces an alternative method for obtaining pointwise estimates. Key features and topics of this self-contained, systematic exposition include: * Resolution of the structure of minimal solutions in the equivariant class, (a) for general point groups, and (b) for general discrete reflection groups, thus establishing the existence of previously unknown lattice solutions. * Preliminary material beginning with the stress-energy tensor, via which monotonicity formulas, and Hamiltonian and Pohozaev identities are developed, including a self-contained exposition of the existence of standing and traveling waves. * Tools that allow the derivation of general properties of minimizers, without any assumptions of symmetry, such as a maximum principle or density and pointwise estimates. * Application of the general tools to equivariant solutions rendering exponential estimates, rigidity theorems and stratification results. This monograph is addressed to readers, beginning from the graduate level, with an interest in any of the following: differential equations - ordinary or partial; nonlinear analysis; the calculus of variations; the relationship of minimal surfaces to diffuse interfaces; or the applied mathematics of materials science.
This book includes the texts of the survey lectures given by plenary speakers at the 11th International ISAAC Congress held in Vaxjoe, Sweden, on 14-18 August, 2017. It is the purpose of ISAAC to promote analysis, its applications, and its interaction with computation. Analysis is understood here in the broad sense of the word, including differential equations, integral equations, functional analysis, and function theory. With this objective, ISAAC organizes international Congresses for the presentation and discussion of research on analysis. The plenary lectures in the present volume, authored by eminent specialists, are devoted to some exciting recent developments, topics including: local solvability for subprincipal type operators; fractional-order Laplacians; degenerate complex vector fields in the plane; lower bounds for pseudo-differential operators; a survey on Morrey spaces; localization operators in Signal Theory and Quantum Mechanics. Thanks to the accessible style used, readers only need a basic command of Calculus. This book will appeal to scientists, teachers, and graduate students in Mathematics, in particular Mathematical Analysis, Probability and Statistics, Numerical Analysis and Mathematical Physics.
These 22 papers on control of nonlinear partial differential equations highlight the area from a wide variety of viewpoints. They comprise theoretical considerations such as optimality conditions, relaxation, or stabilizability theorems, as well as the development and evaluation of new algorithms. A significant part of the volume is devoted to applications in engineering, continuum mechanics and population biology.
These are the proceedings of the 24th International Conference on Domain Decomposition Methods in Science and Engineering, which was held in Svalbard, Norway in February 2017. Domain decomposition methods are iterative methods for solving the often very large systems of equations that arise when engineering problems are discretized, frequently using finite elements or other modern techniques. These methods are specifically designed to make effective use of massively parallel, high-performance computing systems. The book presents both theoretical and computational advances in this domain, reflecting the state of art in 2017.
This contributed volume contains a collection of articles on the most recent advances in integral methods. The second of two volumes, this work focuses on the applications of integral methods to specific problems in science and engineering. Written by internationally recognized researchers, the chapters in this book are based on talks given at the Fourteenth International Conference on Integral Methods in Science and Engineering, held July 25-29, 2016, in Padova, Italy. A broad range of topics is addressed, such as:* Boundary elements* Transport problems* Option pricing* Gas reservoirs* Electromagnetic scattering This collection will be of interest to researchers in applied mathematics, physics, and mechanical and petroleum engineering, as well as graduate students in these disciplines, and to other professionals who use integration as an essential tool in their work.
This monograph offers a self-contained introduction to pseudodifferential operators and wavelets over real and p-adic fields. Aimed at graduate students and researchers interested in harmonic analysis over local fields, the topics covered in this book include pseudodifferential operators of principal type and of variable order, semilinear degenerate pseudodifferential boundary value problems (BVPs), non-classical pseudodifferential BVPs, wavelets and Hardy spaces, wavelet integral operators, and wavelet solutions to Cauchy problems over the real field and the p-adic field.
This volume, like its predecessors, is based on the special session on pseudo-differential operators, one of the many special sessions at the 11th ISAAC Congress, held at Linnaeus University in Sweden on August 14-18, 2017. It includes research papers presented at the session and invited papers by experts in fields that involve pseudo-differential operators. The first four chapters focus on the functional analysis of pseudo-differential operators on a spectrum of settings from Z to Rn to compact groups. Chapters 5 and 6 discuss operators on Lie groups and manifolds with edge, while the following two chapters cover topics related to probabilities. The final chapters then address topics in differential equations.
The scientific literature on the Hardy-Leray inequality, also known as the uncertainty principle, is very extensive and scattered. The Hardy-Leray potential shows an extreme spectral behavior and a peculiar influence on diffusion problems, both stationary and evolutionary. In this book, a big part of the scattered knowledge about these different behaviors is collected in a unified and comprehensive presentation.
The special volume offers a global guide to new concepts and approaches concerning the following topics: reduced basis methods, proper orthogonal decomposition, proper generalized decomposition, approximation theory related to model reduction, learning theory and compressed sensing, stochastic and high-dimensional problems, system-theoretic methods, nonlinear model reduction, reduction of coupled problems/multiphysics, optimization and optimal control, state estimation and control, reduced order models and domain decomposition methods, Krylov-subspace and interpolatory methods, and applications to real industrial and complex problems. The book represents the state of the art in the development of reduced order methods. It contains contributions from internationally respected experts, guaranteeing a wide range of expertise and topics. Further, it reflects an important effor t, carried out over the last 12 years, to build a growing research community in this field. Though not a textbook, some of the chapters can be used as reference materials or lecture notes for classes and tutorials (doctoral schools, master classes).
This book offers an ideal introduction to singular perturbation problems, and a valuable guide for researchers in the field of differential equations. It also includes chapters on new contributions to both fields: differential equations and singular perturbation problems. Written by experts who are active researchers in the related fields, the book serves as a comprehensive source of information on the underlying ideas in the construction of numerical methods to address different classes of problems with solutions of different behaviors, which will ultimately help researchers to design and assess numerical methods for solving new problems. All the chapters presented in the volume are complemented by illustrations in the form of tables and graphs.
This monograph is the first published book devoted to the theory of differential equations with non-instantaneous impulses. It aims to equip the reader with mathematical models and theory behind real life processes in physics, biology, population dynamics, ecology and pharmacokinetics. The authors examine a wide scope of differential equations with non-instantaneous impulses through three comprehensive chapters, providing an all-rounded and unique presentation on the topic, including: - Ordinary differential equations with non-instantaneous impulses (scalar and n-dimensional case)- Fractional differential equations with non-instantaneous impulses (with Caputo fractional derivatives of order q (0, 1))- Ordinary differential equations with non-instantaneous impulses occurring at random moments (with exponential, Erlang, or Gamma distribution) Each chapter focuses on theory, proofs and examples, and contains numerous graphs to enrich the reader's understanding. Additionally, a carefully selected bibliography is included. Graduate students at various levels as well as researchers in differential equations and related fields will find this a valuable resource of both introductory and advanced material.
The subject of nonlinear partial differential equations is experiencing a period of intense activity in the study of systems underlying basic theories in geometry, topology and physics. These mathematical models share the property of being derived from variational principles. Understanding the structure of critical configurations and the dynamics of the corresponding evolution problems is of fundamental importance for the development of the physical theories and their applications. This volume contains survey lectures in four different areas, delivered by leading resarchers at the 1995 Barrett Lectures held at The University of Tennessee: nonlinear hyperbolic systems arising in field theory and relativity (S. Klainerman); harmonic maps from Minkowski spacetime (M. Struwe); dynamics of vortices in the Ginzburg-Landau model of superconductivity (F.-H. Lin); the Seiberg-Witten equations and their application to problems in four-dimensional topology (R. Fintushel). Most of this material has not previously been available in survey form. These lectures provide an up-to-date overview and an introduction to the research literature in each of these areas, which should prove useful to researchers and graduate students in mathematical physics, partial differential equations, differential geometry and topology.
The present book is the first of the two volume proceedings of the Mark Krein International Conference on Operator Theory and Applications. This conference, which was dedicated to the 90th anniversary of the prominent mathematician Mark Krein, was held in Odessa, Ukraine, from August 18-22, 1997. The conference focused on the main ideas, methods, results, and achievements of M. G. Krein. This first volume is devoted to the theory of differential operators and related topics. It opens with a description of the conference, biographical material and a number of survey papers about the work of M. G. Krein. The main part of the book consists of original research papers presenting the state of the art in the area of differential operators. The second volume of these proceedings, entitled Operator Theory and Related Topics, concerns the other aspects of the conference. The two volumes will be of interest to a wide range of readership in pure and applied mathematics, physics and engineering sciences.
This self-contained book covers the theory of semilinear equations with sectorial operator going back to the studies of Yosida, Henry, and Pazy, which are deeply extended nowadays. The treatment emphasizes existence-uniqueness theory as a topic of functional analysis and examines abstract evolutionary equations, with applications to the Navier-Stokes system, the quasi-geostrophic equation, and fractional reaction-diffusion equations.
This book provides the latest competing research results on non-commutative harmonic analysis on homogeneous spaces with many applications. It also includes the most recent developments on other areas of mathematics including algebra and geometry. Lie group representation theory and harmonic analysis on Lie groups and on their homogeneous spaces form a significant and important area of mathematical research. These areas are interrelated with various other mathematical fields such as number theory, algebraic geometry, differential geometry, operator algebra, partial differential equations and mathematical physics. Keeping up with the fast development of this exciting area of research, Ali Baklouti (University of Sfax) and Takaaki Nomura (Kyushu University) launched a series of seminars on the topic, the first of which took place on November 2009 in Kerkennah Islands, the second in Sousse on December 2011, and the third in Hammamet on December 2013. The last seminar, which took place December 18th to 23rd 2015 in Monastir, Tunisia, has promoted further research in all the fields where the main focus was in the area of Analysis, algebra and geometry and on topics of joint collaboration of many teams in several corners. Many experts from both countries have been involved.
This book is aimed to make careful analysis to various mathematical problems derived from shock reflection by using the theory of partial differential equations. The occurrence, propagation and reflection of shock waves are important phenomena in fluid dynamics. Comparing the plenty of studies of physical experiments and numerical simulations on this subject, this book makes main efforts to develop the related theory of mathematical analysis, which is rather incomplete so far. The book first introduces some basic knowledge on the system of compressible flow and shock waves, then presents the concept of shock polar and its properties, particularly the properties of the shock polar for potential flow equation, which are first systematically presented and proved in this book. Mathematical analysis of regular reflection and Mach reflection in steady and unsteady flow are the most essential parts of this book. To give challenges in future research, some long-standing open problems are listed in the end. This book is attractive to researchers in the fields of partial differential equations, system of conservation laws, fluid dynamics, and shock theory.
These are the proceedings of the 25th International Conference on Domain Decomposition Methods in Science and Engineering, which was held in St. John's, Newfoundland, Canada in July 2018. Domain decomposition methods are iterative methods for solving the often very large systems of equations that arise when engineering problems are discretized, frequently using finite elements or other modern techniques. These methods are specifically designed to make effective use of massively parallel, high-performance computing systems. The book presents both theoretical and computational advances in this domain, reflecting the state of art in 2018.
This contributed volume contains a collection of articles on the most recent advances in integral methods. The first of two volumes, this work focuses on the construction of theoretical integral methods. Written by internationally recognized researchers, the chapters in this book are based on talks given at the Fourteenth International Conference on Integral Methods in Science and Engineering, held July 25-29, 2016, in Padova, Italy. A broad range of topics is addressed, such as:* Integral equations* Homogenization* Duality methods* Optimal design* Conformal techniques This collection will be of interest to researchers in applied mathematics, physics, and mechanical and electrical engineering, as well as graduate students in these disciplines, and to other professionals who use integration as an essential tool in their work.
|
You may like...
Boundary Elements and other Mesh…
A. H.-D. Cheng, S. Syngellakis
Hardcover
R3,272
Discovery Miles 32 720
Differential Equations with Linear…
Matthew R. Boelkins, Jack L. Goldberg, …
Hardcover
R2,832
Discovery Miles 28 320
Variational Convergence And Stochastic…
Omar Anza Hafsa, Jean Philippe Mandallena, …
Hardcover
R2,746
Discovery Miles 27 460
Differential Equations with…
Warren Wright, Dennis Zill
Paperback
(1)
|