![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Differential equations
This book is devoted to the analysis of the basic boundary value problems for the Laplace equation in singularly perturbed domains. The main purpose is to illustrate a method called Functional Analytic Approach, to describe the dependence of the solutions upon a singular perturbation parameter in terms of analytic functions. Here the focus is on domains with small holes and the perturbation parameter is the size of the holes. The book is the first introduction to the topic and covers the theoretical material and its applications to a series of problems that range from simple illustrative examples to more involved research results. The Functional Analytic Approach makes constant use of the integral representation method for the solutions of boundary value problems, of Potential Theory, of the Theory of Analytic Functions both in finite and infinite dimension, and of Nonlinear Functional Analysis. Designed to serve various purposes and readerships, the extensive introductory part spanning Chapters 1-7 can be used as a reference textbook for graduate courses on classical Potential Theory and its applications to boundary value problems. The early chapters also contain results that are rarely presented in the literature and may also, therefore, attract the interest of more expert readers. The exposition moves on to introduce the Functional Analytic Approach. A reader looking for a quick introduction to the method can find simple illustrative examples specifically designed for this purpose. More expert readers will find a comprehensive presentation of the Functional Analytic Approach, which allows a comparison between the approach of the book and the more classical expansion methods of Asymptotic Analysis and offers insights on the specific features of the approach and its applications to linear and nonlinear boundary value problems.
This two-volume set presents combinatorial functional equations using an algebraic approach, and illustrates their applications in combinatorial maps, graphs, networks, etc. The first volume mainly presents basic concepts and the theoretical background. Differential (ordinary and partial) equations and relevant topics are discussed in detail.
The Keller-Segel model for chemotaxis is a prototype of nonlocal systems describing concentration phenomena in physics and biology. While the two-dimensional theory is by now quite complete, the questions of global-in-time solvability and blowup characterization are largely open in higher dimensions. In this book, global-in-time solutions are constructed under (nearly) optimal assumptions on initial data and rigorous blowup criteria are derived.
Wave phenomena are ubiquitous in nature. Their mathematical modeling, simulation and analysis lead to fascinating and challenging problems in both analysis and numerical mathematics. These challenges and their impact on significant applications have inspired major results and methods about wave-type equations in both fields of mathematics. The Conference on Mathematics of Wave Phenomena 2018 held in Karlsruhe, Germany, was devoted to these topics and attracted internationally renowned experts from a broad range of fields. These conference proceedings present new ideas, results, and techniques from this exciting research area.
This monograph presents a technique, developed by the author, to design asymptotically exponentially stabilizing finite-dimensional boundary proportional-type feedback controllers for nonlinear parabolic-type equations. The potential control applications of this technique are wide ranging in many research areas, such as Newtonian fluid flows modeled by the Navier-Stokes equations; electrically conducted fluid flows; phase separation modeled by the Cahn-Hilliard equations; and deterministic or stochastic semi-linear heat equations arising in biology, chemistry, and population dynamics modeling. The text provides answers to the following problems, which are of great practical importance: Designing the feedback law using a minimal set of eigenfunctions of the linear operator obtained from the linearized equation around the target state Designing observers for the considered control systems Constructing time-discrete controllers requiring only partial knowledge of the state After reviewing standard notations and results in functional analysis, linear algebra, probability theory and PDEs, the author describes his novel stabilization algorithm. He then demonstrates how this abstract model can be applied to stabilization problems involving magnetohydrodynamic equations, stochastic PDEs, nonsteady-states, and more. Boundary Stabilization of Parabolic Equations will be of particular interest to researchers in control theory and engineers whose work involves systems control. Familiarity with linear algebra, operator theory, functional analysis, partial differential equations, and stochastic partial differential equations is required.
This is an introductory level textbook for partial differential equations (PDEs). It is suitable for a one-semester undergraduate level or two-semester graduate level course in PDEs or applied mathematics. This volume is application-oriented and rich in examples. Going through these examples, the reader is able to easily grasp the basics of PDEs.Chapters One to Five are organized to aid understanding of the basic PDEs. They include the first-order equations and the three fundamental second-order equations, i.e. the heat, wave and Laplace equations. Through these equations, we learn the types of problems, how we pose the problems, and the methods of solutions such as the separation of variables and the method of characteristics. The modeling aspects are explained as well. The methods introduced in earlier chapters are developed further in Chapters Six to Twelve. They include the Fourier series, the Fourier and the Laplace transforms, and the Green's functions. Equations in higher dimensions are also discussed in detail. In this second edition, a new chapter is added and numerous improvements have been made including the reorganization of some chapters. Extensions of nonlinear equations treated in earlier chapters are also discussed.Partial differential equations are becoming a core subject in Engineering and the Sciences. This textbook will greatly benefit those studying in these subjects by covering basic and advanced topics in PDEs based on applications.
The study of nonlinear dynamical systems has exploded in the past 25 years, and Robert L. Devaney has made these advanced research developments accessible to undergraduate and graduate mathematics students as well as researchers in other disciplines with the introduction of this widely praised book. In this second edition of his best-selling text, Devaney includes new material on the orbit diagram fro maps of the interval and the Mandelbrot set, as well as striking color photos illustrating both Julia and Mandelbrot sets. This book assumes no prior acquaintance with advanced mathematical topics such as measure theory, topology, and differential geometry. Assuming only a knowledge of calculus, Devaney introduces many of the basic concepts of modern dynamical systems theory and leads the reader to the point of current research in several areas.
This heavily illustrated book collects in one source most of the mathematically simple systems of differential equations whose solutions are chaotic. It includes the historically important systems of van der Pol, Duffing, Ueda, Lorenz, Rssler, and many others, but it goes on to show that there are many other systems that are simpler and more elegant. Many of these systems have been only recently discovered and are not widely known. Most cases include plots of the attractor and calculations of the spectra of Lyapunov exponents. Some important cases include graphs showing the route to chaos. The book includes many cases not previously published as well as examples of simple electronic circuits that exhibit chaos. No existing book thus far focuses on mathematically elegant chaotic systems. This book should therefore be of interest to chaos researchers looking for simple systems to use in their studies, to instructors who want examples to teach and motivate students, and to students doing independent study.
This book introduces the reader to solving partial differential equations (PDEs) numerically using element-based Galerkin methods. Although it draws on a solid theoretical foundation (e.g. the theory of interpolation, numerical integration, and function spaces), the book's main focus is on how to build the method, what the resulting matrices look like, and how to write algorithms for coding Galerkin methods. In addition, the spotlight is on tensor-product bases, which means that only line elements (in one dimension), quadrilateral elements (in two dimensions), and cubes (in three dimensions) are considered. The types of Galerkin methods covered are: continuous Galerkin methods (i.e., finite/spectral elements), discontinuous Galerkin methods, and hybridized discontinuous Galerkin methods using both nodal and modal basis functions. In addition, examples are included (which can also serve as student projects) for solving hyperbolic and elliptic partial differential equations, including both scalar PDEs and systems of equations.
This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This eighth volume collects authoritative chapters covering several applications of fractional calculus in engineering, life and social sciences, including applications in signal and image analysis, and chaos.
These proceedings are based on the international conference Approximation Theory XVI held on May 19-22, 2019 in Nashville, Tennessee. The conference was the sixteenth in a series of meetings in Approximation Theory held at various locations in the United States. Over 130 mathematicians from 20 countries attended. The book contains two longer survey papers on nonstationary subdivision and Prony's method, along with 11 research papers on a variety of topics in approximation theory, including Balian-Low theorems, butterfly spline interpolation, cubature rules, Hankel and Toeplitz matrices, phase retrieval, positive definite kernels, quasi-interpolation operators, stochastic collocation, the gradient conjecture, time-variant systems, and trivariate finite elements. The book should be of interest to mathematicians, engineers, and computer scientists working in approximation theory, computer-aided geometric design, numerical analysis, and related approximation areas.
This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This seventh volume collects authoritative chapters covering several applications of fractional calculus in in engineering, life, and social sciences, including applications in biology and medicine, mechanics of complex media, economy, and electrical devices.
This book introduces the fundamental concepts, methods, and applications of Hausdorff calculus, with a focus on its applications in fractal systems. Topics such as the Hausdorff diffusion equation, Hausdorff radial basis function, Hausdorff derivative nonlinear systems, PDE modeling, statistics on fractals, etc. are discussed in detail. It is an essential reference for researchers in mathematics, physics, geomechanics, and mechanics.
The Abel Symposia volume at hand contains a collection of high-quality articles written by the world's leading experts, and addressing all mathematicians interested in advances in deterministic and stochastic dynamical systems, numerical analysis, and control theory. In recent years we have witnessed a remarkable convergence between individual mathematical disciplines that approach deterministic and stochastic dynamical systems from mathematical analysis, computational mathematics and control theoretical perspectives. Breakthrough developments in these fields now provide a common mathematical framework for attacking many different problems related to differential geometry, analysis and algorithms for stochastic and deterministic dynamics. In the Abel Symposium 2016, which took place from August 16-19 in Rosendal near Bergen, leading researchers in the fields of deterministic and stochastic differential equations, control theory, numerical analysis, algebra and random processes presented and discussed the current state of the art in these diverse fields. The current Abel Symposia volume may serve as a point of departure for exploring these related but diverse fields of research, as well as an indicator of important current and future developments in modern mathematics.
This volume includes contributions originating from a conference held at Chapman University during November 14-19, 2017. It presents original research by experts in signal processing, linear systems, operator theory, complex and hypercomplex analysis and related topics.
This volume features selected papers from The Fifteenth International Conference on Order Analysis and Related Problems of Mathematical Modeling, which was held in Vladikavkaz, Russia, on 15 - 20th July 2019. Intended for mathematicians specializing in operator theory, functional spaces, differential equations or mathematical modeling, the book provides a state-of-the-art account of various fascinating areas of operator theory, ranging from various classes of operators (positive operators, convolution operators, backward shift operators, singular and fractional integral operators, partial differential operators) to important applications in differential equations, inverse problems, approximation theory, metric theory of surfaces, the Hubbard model, social stratification models, and viscid incompressible fluids.
The book covers the latest research in the areas of mathematics that deal the properties of partial differential equations and stochastic processes on spaces in connection with the geometry of the underlying space. Written by experts in the field, this book is a valuable tool for the advanced mathematician.
This is an indispensable reference for those mathematicians that conduct research activity in applications of fixed-point theory to boundary value problems for nonlinear functional equations. Coverage includes second-order finite difference equations and systems of difference equations subject to multi-point boundary conditions, various methods to study the existence of positive solutions for difference equations, and Green functions.
This is the second in a pair of works which study small disturbances to the plane, periodic 3D Couette flow in the incompressible Navier-Stokes equations at high Reynolds number Re. In this work, we show that there is constant 0 0 exist at least until t = c0???1 and in general evolve to be O(c0) due to the lift-up e?ect. Further, after times t Re1/3, the streamwise dependence of the solution is rapidly diminished by a mixing-enhanced dissipation e?ect and the solution is attracted back to the class of "2.5 dimensional" streamwise-independent solutions (sometimes referred to as "streaks"). The largest of these streaks are expected to eventually undergo a secondary instability at t ? ???1. Hence, our work strongly suggests, for all (sufficiently regular) initial data, the genericity of the "lift-up e?ect streak growth streak breakdown" scenario for turbulent transition of the 3D Couette flow near the threshold of stability forwarded in the applied mathematics and physics literature.
This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This sixth volume collects authoritative chapters covering several applications of fractional calculus in control theory, including fractional controllers, design methods and toolboxes, and a large number of engineering applications of control.
An Invitation to Applied Mathematics: Differential Equations, Modeling, and Computation introduces the reader to the methodology of modern applied mathematics in modeling, analysis, and scientific computing with emphasis on the use of ordinary and partial differential equations. Each topic is introduced with an attractive physical problem, where a mathematical model is constructed using physical and constitutive laws arising from the conservation of mass, conservation of momentum, or Maxwell's electrodynamics. Relevant mathematical analysis (which might employ vector calculus, Fourier series, nonlinear ODEs, bifurcation theory, perturbation theory, potential theory, control theory, or probability theory) or scientific computing (which might include Newton's method, the method of lines, finite differences, finite elements, finite volumes, boundary elements, projection methods, smoothed particle hydrodynamics, or Lagrangian methods) is developed in context and used to make physically significant predictions. The target audience is advanced undergraduates (who have at least a working knowledge of vector calculus and linear ordinary differential equations) or beginning graduate students. Readers will gain a solid and exciting introduction to modeling, mathematical analysis, and computation that provides the key ideas and skills needed to enter the wider world of modern applied mathematics.
This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This fifth volume collects authoritative chapters covering several applications of fractional calculus in physics, including electrodynamics, statistical physics and physical kinetics, and quantum theory.
This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This fourth volume collects authoritative chapters covering several applications of fractional calculus in physics, including classical and continuum mechanics.
This book presents the proceedings of the international conference Particle Systems and Partial Differential Equations V, which was held at the University of Minho, Braga, Portugal, from the 28th to 30th November 2016. It includes papers on mathematical problems motivated by various applications in physics, engineering, economics, chemistry, and biology. The purpose of the conference was to bring together prominent researchers working in the fields of particle systems and partial differential equations, providing a venue for them to present their latest findings and discuss their areas of expertise. Further, it was intended to introduce a vast and varied public, including young researchers, to the subject of interacting particle systems, its underlying motivation, and its relation to partial differential equations. The book appeals to probabilists, analysts and also to mathematicians in general whose work focuses on topics in mathematical physics, stochastic processes and differential equations, as well as to physicists working in the area of statistical mechanics and kinetic theory. |
![]() ![]() You may like...
Arbor Day, Rhode Island: May 14th, 1897…
Rhode Island Office of Commissioner of Education
Paperback
R368
Discovery Miles 3 680
|