![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Differential equations
This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This sixth volume collects authoritative chapters covering several applications of fractional calculus in control theory, including fractional controllers, design methods and toolboxes, and a large number of engineering applications of control.
Intended to be used as an introductory text for students in various fields of engineering, this book deals with the formulation of the finite element method for arbitrary differential equations. The weak formulation of differential equations is used in combination with the Galerkin method.
The Abel Symposia volume at hand contains a collection of high-quality articles written by the world's leading experts, and addressing all mathematicians interested in advances in deterministic and stochastic dynamical systems, numerical analysis, and control theory. In recent years we have witnessed a remarkable convergence between individual mathematical disciplines that approach deterministic and stochastic dynamical systems from mathematical analysis, computational mathematics and control theoretical perspectives. Breakthrough developments in these fields now provide a common mathematical framework for attacking many different problems related to differential geometry, analysis and algorithms for stochastic and deterministic dynamics. In the Abel Symposium 2016, which took place from August 16-19 in Rosendal near Bergen, leading researchers in the fields of deterministic and stochastic differential equations, control theory, numerical analysis, algebra and random processes presented and discussed the current state of the art in these diverse fields. The current Abel Symposia volume may serve as a point of departure for exploring these related but diverse fields of research, as well as an indicator of important current and future developments in modern mathematics.
This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This fifth volume collects authoritative chapters covering several applications of fractional calculus in physics, including electrodynamics, statistical physics and physical kinetics, and quantum theory.
This volume includes contributions originating from a conference held at Chapman University during November 14-19, 2017. It presents original research by experts in signal processing, linear systems, operator theory, complex and hypercomplex analysis and related topics.
These proceedings are based on the international conference Approximation Theory XVI held on May 19-22, 2019 in Nashville, Tennessee. The conference was the sixteenth in a series of meetings in Approximation Theory held at various locations in the United States. Over 130 mathematicians from 20 countries attended. The book contains two longer survey papers on nonstationary subdivision and Prony's method, along with 11 research papers on a variety of topics in approximation theory, including Balian-Low theorems, butterfly spline interpolation, cubature rules, Hankel and Toeplitz matrices, phase retrieval, positive definite kernels, quasi-interpolation operators, stochastic collocation, the gradient conjecture, time-variant systems, and trivariate finite elements. The book should be of interest to mathematicians, engineers, and computer scientists working in approximation theory, computer-aided geometric design, numerical analysis, and related approximation areas.
This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This fourth volume collects authoritative chapters covering several applications of fractional calculus in physics, including classical and continuum mechanics.
The book covers the latest research in the areas of mathematics that deal the properties of partial differential equations and stochastic processes on spaces in connection with the geometry of the underlying space. Written by experts in the field, this book is a valuable tool for the advanced mathematician.
This volume features selected papers from The Fifteenth International Conference on Order Analysis and Related Problems of Mathematical Modeling, which was held in Vladikavkaz, Russia, on 15 - 20th July 2019. Intended for mathematicians specializing in operator theory, functional spaces, differential equations or mathematical modeling, the book provides a state-of-the-art account of various fascinating areas of operator theory, ranging from various classes of operators (positive operators, convolution operators, backward shift operators, singular and fractional integral operators, partial differential operators) to important applications in differential equations, inverse problems, approximation theory, metric theory of surfaces, the Hubbard model, social stratification models, and viscid incompressible fluids.
The relaxation method has enjoyed an intensive development during many decades and this new edition of this comprehensive text reflects in particular the main achievements in the past 20 years. Moreover, many further improvements and extensions are included, both in the direction of optimal control and optimal design as well as in numerics and applications in materials science, along with an updated treatment of the abstract parts of the theory.
This book is written to meet the needs of undergraduates in applied
mathematics, physics and engineering studying partial differential
equations. It is a more modern, comprehensive treatment intended
for students who need more than the purely numerical solutions
provided by programs like the MATLAB PDE Toolbox, and those
obtained by the method of separation of variables, which is usually
the only theoretical approach found in the majority of elementary
textbooks.
This book presents the applications of fractional calculus, fractional operators of non-integer orders and fractional differential equations in describing economic dynamics with long memory. Generalizations of basic economic concepts, notions and methods for the economic processes with memory are suggested. New micro and macroeconomic models with continuous time are proposed to describe the fractional economic dynamics with long memory as well.
Linear Algebra and Differential Equations has been written for a one-semester combined linear algebra and differential equations course, yet it contains enough material for a two-term sequence in linear algebra and differential equations. By introducing matrices, determinants, and vector spaces early in the course, the authors are able to fully develop the connections between linear algebra and differential equations. The book is flexible enough to be easily adapted to fit most syllabi, including separate courses that that cover linear algebra in the first followed by differential equations in the second. Technology is fully integrated where appropriate, and the text offers fresh and relevant applications to motivate student interest.
This book presents the proceedings of the international conference Particle Systems and Partial Differential Equations V, which was held at the University of Minho, Braga, Portugal, from the 28th to 30th November 2016. It includes papers on mathematical problems motivated by various applications in physics, engineering, economics, chemistry, and biology. The purpose of the conference was to bring together prominent researchers working in the fields of particle systems and partial differential equations, providing a venue for them to present their latest findings and discuss their areas of expertise. Further, it was intended to introduce a vast and varied public, including young researchers, to the subject of interacting particle systems, its underlying motivation, and its relation to partial differential equations. The book appeals to probabilists, analysts and also to mathematicians in general whose work focuses on topics in mathematical physics, stochastic processes and differential equations, as well as to physicists working in the area of statistical mechanics and kinetic theory.
This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This third volume collects authoritative chapters covering several numerical aspects of fractional calculus, including time and space fractional derivatives, finite differences and finite elements, and spectral, meshless, and particle methods.
Combining traditional differential equation material with a modern qualitative and systems approach, this new edition continues to deliver flexibility of use and extensive problem sets. The second edition's refreshed presentation includes extensive new visuals, as well as updated exercises throughout.
Appropriate for introductory courses in Differential Equations. This clear, concise fairly easy classic text is particularly well-suited to courses that emphasize finding solutions to differential equations where applications play an important role. Many illustrative examples in each chapter help the student to understand the subject. Computer applications new to this edition.
Most mathematicians, engineers, and many other scientists are well-acquainted with theory and application of ordinary differential equations. This book seeks to present Volterra integral and functional differential equations in that same framwork, allowing the readers to parlay their knowledge of ordinary differential equations into theory and application of the more general problems. Thus, the presentation starts slowly with very familiar concepts and shows how these are generalized in a natural way to problems involving a memory. Liapunov's direct method is gently introduced and applied to many particular examples in ordinary differential equations, Volterra integro-differential equations, and functional differential equations.
The geometry of power exponents includes the Newton polyhedron,
normal cones of its faces, power and logarithmic transformations.
On the basis of the geometry universal algorithms for
simplifications of systems of nonlinear equations (algebraic,
ordinary differential and partial differential) were developed.
This is an indispensable reference for those mathematicians that conduct research activity in applications of fixed-point theory to boundary value problems for nonlinear functional equations. Coverage includes second-order finite difference equations and systems of difference equations subject to multi-point boundary conditions, various methods to study the existence of positive solutions for difference equations, and Green functions.
This is the second in a pair of works which study small disturbances to the plane, periodic 3D Couette flow in the incompressible Navier-Stokes equations at high Reynolds number Re. In this work, we show that there is constant 0 0 exist at least until t = c0???1 and in general evolve to be O(c0) due to the lift-up e?ect. Further, after times t Re1/3, the streamwise dependence of the solution is rapidly diminished by a mixing-enhanced dissipation e?ect and the solution is attracted back to the class of "2.5 dimensional" streamwise-independent solutions (sometimes referred to as "streaks"). The largest of these streaks are expected to eventually undergo a secondary instability at t ? ???1. Hence, our work strongly suggests, for all (sufficiently regular) initial data, the genericity of the "lift-up e?ect streak growth streak breakdown" scenario for turbulent transition of the 3D Couette flow near the threshold of stability forwarded in the applied mathematics and physics literature.
This book presents contributions from two workshops in algebraic and analytic microlocal analysis that took place in 2012 and 2013 at Northwestern University. Featured papers expand on mini-courses and talks ranging from foundational material to advanced research-level papers, and new applications in symplectic geometry, mathematical physics, partial differential equations, and complex analysis are discussed in detail. Topics include Procesi bundles and symplectic reflection algebras, microlocal condition for non-displaceability, polarized complex manifolds, nodal sets of Laplace eigenfunctions, geodesics in the space of K hler metrics, and partial Bergman kernels. This volume is a valuable resource for graduate students and researchers in mathematics interested in understanding microlocal analysis and learning about recent research in the area.
This book is a liber amicorum to Professor Sergei Konstantinovich Godunov and gathers contributions by renowned scientists in honor of his 90th birthday. The contributions address those fields that Professor Godunov is most famous for: differential and difference equations, partial differential equations, equations of mathematical physics, mathematical modeling, difference schemes, advanced computational methods for hyperbolic equations, computational methods for linear algebra, and mathematical problems in continuum mechanics.
Fundamentals of Differential Equations presents the basic theory of differential equations and offers a variety of modern applications in science and engineering. Available in two versions, these flexible texts offer the instructor many choices in syllabus design, course emphasis (theory, methodology, applications, and numerical methods), and in using commercially available computer software. Fundamentals of Differential Equations, Eighth Edition is suitable for a one-semester sophomore- or junior-level course. Fundamentals of Differential Equations with Boundary Value Problems, 'Sixth Edition, contains enough material for a two-semester course that covers and builds on boundary value problems. The Boundary Value Problems version consists of the main text plus three additional chapters (Eigenvalue Problems and Sturm-Liouville Equations; Stability of Autonomous Systems; and Existence and Uniqueness Theory)
For combined differential equations and linear algebra courses teaching students who have successfully completed three semesters of calculus. This complete introduction to both differential equations and linear algebra presents a carefully balanced and sound integration of the two topics. It promotes in-depth understanding rather than rote memorization, enabling students to fully comprehend abstract concepts and leave the course with a solid foundation in linear algebra. Flexible in format, it explains concepts clearly and logically with an abundance of examples and illustrations, without sacrificing level or rigor. A vast array of problems supports the material, with varying levels from which students/instructors can choose. |
![]() ![]() You may like...
Game Theory for Cyber Deception - From…
Jeffrey Pawlick, Quanyan Zhu
Hardcover
R3,124
Discovery Miles 31 240
Mathematical Modelling - Education…
C Haines, P. Galbraith, …
Paperback
Research Anthology on Blockchain…
Information Reso Management Association
Hardcover
R10,606
Discovery Miles 106 060
Translation and Meaning - New Series…
Barbara Lewandowska-Tomaszczyk, Marcel Thelen, …
Hardcover
R2,063
Discovery Miles 20 630
Semantic Analysis of Verbal Collocations…
Alexander Gelbukh, Olga Kolesnikova
Hardcover
R4,348
Discovery Miles 43 480
Foundation Models for Natural Language…
Gerhard PaaĆ, Sven Giesselbach
Hardcover
|