![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Differential equations
This book presents a systematic exposition of the main ideas and methods in treating inverse problems for PDEs arising in basic mathematical models, though it makes no claim to being exhaustive. Mathematical models of most physical phenomena are governed by initial and boundary value problems for PDEs, and inverse problems governed by these equations arise naturally in nearly all branches of science and engineering. The book's content, especially in the Introduction and Part I, is self-contained and is intended to also be accessible for beginning graduate students, whose mathematical background includes only basic courses in advanced calculus, PDEs and functional analysis. Further, the book can be used as the backbone for a lecture course on inverse and ill-posed problems for partial differential equations. In turn, the second part of the book consists of six nearly-independent chapters. The choice of these chapters was motivated by the fact that the inverse coefficient and source problems considered here are based on the basic and commonly used mathematical models governed by PDEs. These chapters describe not only these inverse problems, but also main inversion methods and techniques. Since the most distinctive features of any inverse problems related to PDEs are hidden in the properties of the corresponding solutions to direct problems, special attention is paid to the investigation of these properties. For the second edition, the authors have added two new chapters focusing on real-world applications of inverse problems arising in wave and vibration phenomena. They have also revised the whole text of the first edition.
The systematic study of existence, uniqueness, and properties of solutions to stochastic differential equations in infinite dimensions arising from practical problems characterizes this volume that is intended for graduate students and for pure and applied mathematicians, physicists, engineers, professionals working with mathematical models of finance. Major methods include compactness, coercivity, monotonicity, in a variety of set-ups. The authors emphasize the fundamental work of Gikhman and Skorokhod on the existence and uniqueness of solutions to stochastic differential equations and present its extension to infinite dimension. They also generalize the work of Khasminskii on stability and stationary distributions of solutions. New results, applications, and examples of stochastic partial differential equations are included. This clear and detailed presentation gives the basics of the infinite dimensional version of the classic books of Gikhman and Skorokhod and of Khasminskii in one concise volume that covers the main topics in infinite dimensional stochastic PDE's. By appropriate selection of material, the volume can be adapted for a 1- or 2-semester course, and can prepare the reader for research in this rapidly expanding area.
This book presents up-to-date results on abstract evolution equations and differential inclusions in infinite dimensional spaces. It covers equations with time delay and with impulses, and complements the existing literature in functional differential equations and inclusions. The exposition is devoted to both local and global mild solutions for some classes of functional differential evolution equations and inclusions, and other densely and non-densely defined functional differential equations and inclusions in separable Banach spaces or in Frechet spaces. The tools used include classical fixed points theorems and the measure-of non-compactness, and each chapter concludes with a section devoted to notes and bibliographical remarks. This monograph is particularly useful for researchers and graduate students studying pure and applied mathematics, engineering, biology and all other applied sciences.
This book examines in detail the nonlinear Ginzburg-Landau functional, the model most commonly used in the study of superconductivity. Specifically covered are cases in the presence of a strong magnetic field and with a sufficiently large Ginzburg-Landau parameter kappa. Spectral Methods in Surface Superconductivity is intended for students and researchers with a graduate-level understanding of functional analysis, spectral theory, and the analysis of partial differential equations. The book also includes an overview of all nonstandard material as well as important semi-classical techniques in spectral theory that are involved in the nonlinear study of superconductivity.
This book brings together 12 chapters on a new stream of research examining complex phenomena in nonlinear systems-including engineering, physics, and social science. Complex Motions and Chaos in Nonlinear Systems provides readers a particular vantage of the nature and nonlinear phenomena in nonlinear dynamics that can develop the corresponding mathematical theory and apply nonlinear design to practical engineering as well as the study of other complex phenomena including those investigated within social science.
The goal in putting together this unique compilation was to present the current status of the solutions to some of the most essential open problems in pure and applied mathematics. Emphasis is also given to problems in interdisciplinary research for which mathematics plays a key role. This volume comprises highly selected contributions by some of the most eminent mathematicians in the international mathematical community on longstanding problems in very active domains of mathematical research. A joint preface by the two volume editors is followed by a personal farewell to John F. Nash, Jr. written by Michael Th. Rassias. An introduction by Mikhail Gromov highlights some of Nash's legendary mathematical achievements. The treatment in this book includes open problems in the following fields: algebraic geometry, number theory, analysis, discrete mathematics, PDEs, differential geometry, topology, K-theory, game theory, fluid mechanics, dynamical systems and ergodic theory, cryptography, theoretical computer science, and more. Extensive discussions surrounding the progress made for each problem are designed to reach a wide community of readers, from graduate students and established research mathematicians to physicists, computer scientists, economists, and research scientists who are looking to develop essential and modern new methods and theories to solve a variety of open problems.
Approximation theory and numerical analysis are central to the creation of accurate computer simulations and mathematical models. Research in these areas can influence the computational techniques used in a variety of mathematical and computational sciences. This collection of contributed chapters, dedicated to renowned mathematician Gradimir V. Milovanovi, represent the recent work of experts in the fields of approximation theory and numerical analysis. These invited contributions describe new trends in these important areas of research including theoretic developments, new computational algorithms, and multidisciplinary applications. Special features of this volume: - Presents results and approximation methods in various computational settings including: polynomial and orthogonal systems, analytic functions, and differential equations. - Provides a historical overview of approximation theory and many of its subdisciplines; - Contains new results from diverse areas of research spanning mathematics, engineering, and the computational sciences. "Approximation and Computation" is intended for mathematicians and researchers focusing on approximation theory and numerical analysis, but can also be a valuable resource to students and researchers in the computational and applied sciences."
Exactly 100 years ago, in 1895, G. de Vries, under the supervision of D.J. Korteweg, defended his thesis on what is now known as the Korteweg-de Vries Equation. They published a joint paper in 1895 in the "Philosophical Magazine", entitled "On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary wave". In the 1960s research on this and related equations exploded. There are now some 3100 papers in mathematics and physics that contain a mention of the phrase "Korteweg-de Vries equation" in their title or abstract, and there are thousands more in other areas, such as biology, chemistry, electronics, geology, oceanology, meteorology, and so forth. And, of course, the KdV equation is only one of what are now called (Liouville) completely integrable systems. The KdV and its relatives continually turn up in situations when one wishes to incorporate nonlinear and dispersive effects into wave-type phenomena.
The subject of the book is the mathematical theory of the discontinuous Galerkin method (DGM), which is a relatively new technique for the numerical solution of partial differential equations. The book is concerned with the DGM developed for elliptic and parabolic equations and its applications to the numerical simulation of compressible flow. It deals with the theoretical as well as practical aspects of the DGM and treats the basic concepts and ideas of the DGM, as well as the latest significant findings and achievements in this area. The main benefit for readers and the book's uniqueness lie in the fact that it is sufficiently detailed, extensive and mathematically precise, while at the same time providing a comprehensible guide through a wide spectrum of discontinuous Galerkin techniques and a survey of the latest efficient, accurate and robust discontinuous Galerkin schemes for the solution of compressible flow.
This proceedings volume gathers peer-reviewed, selected papers presented at the "Mathematical and Numerical Approaches for Multi-Wave Inverse Problems" conference at the Centre Internacional de Rencontres Mathematiques (CIRM) in Marseille, France, in April 2019. It brings the latest research into new, reliable theoretical approaches and numerical techniques for solving nonlinear and inverse problems arising in multi-wave and hybrid systems. Multi-wave inverse problems have a wide range of applications in acoustics, electromagnetics, optics, medical imaging, and geophysics, to name but a few. In turn, it is well known that inverse problems are both nonlinear and ill-posed: two factors that pose major challenges for the development of new numerical methods for solving these problems, which are discussed in detail. These papers will be of interest to all researchers and graduate students working in the fields of nonlinear and inverse problems and its applications.
This comprehensive textbook is intended for a two-semester sequence in analysis. The first four chapters present a practical introduction to analysis by using the tools and concepts of calculus.The last five chapters present a first course in analysis. The presentation is clear and concise, allowing students to master the calculus tools that are crucial in understanding analysis. "From Calculus to Analysis "prepares readers for their first analysis course-important because many undergraduate programs traditionally require such a course. Undergraduates and some advanced high-school seniors will find this text a useful and pleasant experience in the classroom or as a self-study guide. The only prerequisite is a standard calculus course."
PMThis work presents a thorough treatment of boundary element methods (BEM) for solving strongly elliptic boundary integral equations obtained from boundary reduction of elliptic boundary value problems?? in $\mathbb{R}^3$. The book is self-contained, the prerequisites on elliptic partial differential and integral equations being presented in Chapters 2 and 3. The main focus is on the development, analysis, and implementation of Galerkin boundary element methods, which is one of the most flexible and robust numerical discretization methods for integral equations. For the efficient realization of the Galerkin BEM, it is essential to replace time-consuming steps in the numerical solution process with fast algorithms. In Chapters 5-9 these methods are developed, analyzed, and formulated in an algorithmic wa
Fractional-order calculus dates to the 19th century but has been resurrected as a prevalent research subject due to its provision of more adequate and realistic descriptions of physical aspects within the science and engineering fields. What was once a classical form of mathematics is currently being reintroduced as a new modeling technique that engineers and scientists are finding modern uses for. There is a need for research on all facets of these fractional-order systems and studies of its potential applications. Advanced Applications of Fractional Differential Operators to Science and Technology provides emerging research exploring the theoretical and practical aspects of novel fractional modeling and related dynamical behaviors as well as its applications within the fields of physical sciences and engineering. Featuring coverage on a broad range of topics such as chaotic dynamics, ecological models, and bifurcation control, this book is ideally designed for engineering professionals, mathematicians, physicists, analysts, researchers, educators, and students seeking current research on fractional calculus and other applied mathematical modeling techniques.
The behavior of materials at the nanoscale is a key aspect of modern nanoscience and nanotechnology. This book presents rigorous mathematical techniques showing that some very useful phenomenological properties which can be observed at the nanoscale in many nonlinear reaction-diffusion processes can be simulated and justified mathematically by means of homogenization processes when a certain critical scale is used in the corresponding framework.
This volume includes several invited lectures given at the International Workshop "Analysis, Partial Differential Equations and Applications," held at the Mathematical Department of Sapienza University of Rome, on the occasion of the 70th birthday of Vladimir G. Maz'ya, a renowned mathematician and one of the main experts in the field of pure and applied analysis. The book aims at spreading the seminal ideas of Maz'ya to a larger audience in faculties of sciences and engineering. In fact, all articles were inspired by previous works of Maz'ya in several frameworks, including classical and contemporary problems connected with boundary and initial value problems for elliptic, hyperbolic and parabolic operators, Schrodinger-type equations, mathematical theory of elasticity, potential theory, capacity, singular integral operators, p-Laplacians, functional analysis, and approximation theory. Maz'ya is author of more than 450 papers and 20 books. In his long career he obtained many astonishing and frequently cited results in the theory of harmonic potentials on non-smooth domains, potential and capacity theories, spaces of functions with bounded variation, maximum principle for higher-order elliptic equations, Sobolev multipliers, approximate approximations, etc. The topics included in this volume will be particularly useful to all researchers who are interested in achieving a deeper understanding of the large expertise of Vladimir Maz'ya."
This monograph presents some theoretical and computational aspects of the parameterization method for invariant manifolds, focusing on the following contexts: invariant manifolds associated with fixed points, invariant tori in quasi-periodically forced systems, invariant tori in Hamiltonian systems and normally hyperbolic invariant manifolds. This book provides algorithms of computation and some practical details of their implementation. The methodology is illustrated with 12 detailed examples, many of them well known in the literature of numerical computation in dynamical systems. A public version of the software used for some of the examples is available online. The book is aimed at mathematicians, scientists and engineers interested in the theory and applications of computational dynamical systems.
The book treats the theory of attractors for non-autonomous dynamical systems. The aim of the book is to give a coherent account of the current state of the theory, using the framework of processes to impose the minimum of restrictions on the nature of the non-autonomous dependence. The book is intended as an up-to-date summary of the field, but much of it will be accessible to beginning graduate students. Clear indications will be given as to which material is fundamental and which is more advanced, so that those new to the area can quickly obtain an overview, while those already involved can pursue the topics we cover more deeply.
Various general techniques have been developed for control and systems problems, many of which involve indirect methods. Because these indirect methods are not always effective, alternative approaches using direct methods are of particular interest and relevance given the advances of computing in recent years.The focus of this book, unique in the literature, is on direct methods, which are concerned with finding actual solutions to problems in control and systems, often algorithmic in nature. Throughout the work, deterministic and stochastic problems are examined from a unified perspective and with considerable rigor. Emphasis is placed on the theoretical basis of the methods and their potential utility in a broad range of control and systems problems.The book is an excellent reference for graduate students, researchers, applied mathematicians, and control engineers and may be used as a textbook for a graduate course or seminar on direct methods in control.
There is no recent elementary introduction to the theory of discrete dynamical systems that stresses the topological background of the topic. This book fills this gap: it deals with this theory as 'applied general topology'. We treat all important concepts needed to understand recent literature. The book is addressed primarily to graduate students. The prerequisites for understanding this book are modest: a certain mathematical maturity and course in General Topology are sufficient.
This book contains a first systematic study of compressible fluid flows subject to stochastic forcing. The bulk is the existence of dissipative martingale solutions to the stochastic compressible Navier-Stokes equations. These solutions are weak in the probabilistic sense as well as in the analytical sense. Moreover, the evolution of the energy can be controlled in terms of the initial energy. We analyze the behavior of solutions in short-time (where unique smooth solutions exists) as well as in the long term (existence of stationary solutions). Finally, we investigate the asymptotics with respect to several parameters of the model based on the energy inequality. Contents Part I: Preliminary results Elements of functional analysis Elements of stochastic analysis Part II: Existence theory Modeling fluid motion subject to random effects Global existence Local well-posedness Relative energy inequality and weak-strong uniqueness Part III: Applications Stationary solutions Singular limits
Since the early eighties, Ali Suleyman Ustunelhas beenone of the
main contributors to the field of Malliavin calculus. In a workshop
held in Paris, June 2010 several prominent researchers gave
exciting talks in honor of his 60th birthday. The present volume
includes scientific contributions from this workshop.
This two-volume monograph presents new methods of construction of global asymptotics of solutions to nonlinear equations with small parameter. These allow one to match the asymptotics of various properties with each other in transition regions and to get unified formulas for the connection of characteristic parameters of approximate solutions. This approach underlies modern asymptotic methods and gives a deep insight into crucial nonlinear phenomena in the natural sciences. These include the outset of chaos in dynamical systems, incipient solitary and shock waves, oscillatory processes in crystals, engineering applications, and quantum systems. Apart from being of independent interest, such approximate solutions serve as a foolproof basis for testing numerical algorithms. This first volume presents asymptotic methods in oscillation and resonance problems described by ordinary differential equations, whereby the second volume will be devoted to applications of asymptotic methods in waves and boundary value problems. Contents Asymptotic expansions and series Asymptotic methods for solving nonlinear equations Nonlinear oscillator in potential well Autoresonances in nonlinear systems Asymptotics for loss of stability Systems of coupled oscillators
This text provides the first comprehensive treatment of the discrete fractional calculus. Experienced researchers will find the text useful as a reference for discrete fractional calculus and topics of current interest. Students who are interested in learning about discrete fractional calculus will find this text to provide a useful starting point. Several exercises are offered at the end of each chapter and select answers have been provided at the end of the book. The presentation of the content is designed to give ample flexibility for potential use in a myriad of courses and for independent study. The novel approach taken by the authors includes a simultaneous treatment of the fractional- and integer-order difference calculus (on a variety of time scales, including both the usual forward and backwards difference operators). The reader will acquire a solid foundation in the classical topics of the discrete calculus while being introduced to exciting recent developments, bringing them to the frontiers of the subject. Most chapters may be covered or omitted, depending upon the background of the student. For example, the text may be used as a primary reference in an introductory course for difference equations which also includes discrete fractional calculus. Chapters 1-2 provide a basic introduction to the delta calculus including fractional calculus on the set of integers. For courses where students already have background in elementary real analysis, Chapters 1-2 may be covered quickly and readers may then skip to Chapters 6-7 which present some basic results in fractional boundary value problems (FBVPs). Chapters 6-7 in conjunction with some of the current literature listed in the Bibliography can provide a basis for a seminar in the current theory of FBVPs. For a two-semester course, Chapters 1-5 may be covered in depth, providing a very thorough introduction to both the discrete fractional calculus as well as the integer-order calculus.
Concentration analysis provides, in settings without a priori available compactness, a manageable structural description for the functional sequences intended to approximate solutions of partial differential equations. Since the introduction of concentration compactness in the 1980s, concentration analysis today is formalized on the functional-analytic level as well as in terms of wavelets, extends to a wide range of spaces, involves much larger class of invariances than the original Euclidean rescalings and has a broad scope of applications to PDE. This book represents current research in concentration and blow-up phenomena from various perspectives, with a variety of applications to elliptic and evolution PDEs, as well as a systematic functional-analytic background for concentration phenomena, presented by profile decompositions based on wavelet theory and cocompact imbeddings.
This book presents the proceedings of the international conference Particle Systems and Partial Differential Equations I, which took place at the Centre of Mathematics of the University of Minho, Braga, Portugal, from the 5th to the 7th of December, 2012. The purpose of the conference was to bring together world leaders to discuss their topics of expertise and to present some of their latest research developments in those fields. Among the participants were researchers in probability, partial differential equations and kinetics theory. The aim of the meeting was to present to a varied public the subject of interacting particle systems, its motivation from the viewpoint of physics and its relation with partial differential equations or kinetics theory and to stimulate discussions and possibly new collaborations among researchers with different backgrounds. The book contains lecture notes written by Francois Golse on the derivation of hydrodynamic equations (compressible and incompressible Euler and Navier-Stokes) from the Boltzmann equation, and several short papers written by some of the participants in the conference. Among the topics covered by the short papers are hydrodynamic limits; fluctuations; phase transitions; motions of shocks and anti shocks in exclusion processes; large number asymptotics for systems with self-consistent coupling; quasi-variational inequalities; unique continuation properties for PDEs and others. The book will benefit probabilists, analysts and mathematicians who are interested in statistical physics, stochastic processes, partial differential equations and kinetics theory, along with physicists." |
![]() ![]() You may like...
Sparse Polynomial Optimization: Theory…
Victor Magron, Jie Wang
Hardcover
R2,308
Discovery Miles 23 080
Bio-Inspired Collaborative Intelligent…
Yongsheng Ding, Lei Chen, …
Hardcover
R4,993
Discovery Miles 49 930
Methadone Maintenance in the Management…
Awni Arif, Joseph Westermeyer
Hardcover
R2,190
Discovery Miles 21 900
Workplace Drug Abuse and AIDS - A Guide…
Donald Klingner, Nancy G. O'Neill
Hardcover
R2,771
Discovery Miles 27 710
|