![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Differential equations
Local Fractional Integral Transforms and Their Applications provides information on how local fractional calculus has been successfully applied to describe the numerous widespread real-world phenomena in the fields of physical sciences and engineering sciences that involve non-differentiable behaviors. The methods of integral transforms via local fractional calculus have been used to solve various local fractional ordinary and local fractional partial differential equations and also to figure out the presence of the fractal phenomenon. The book presents the basics of the local fractional derivative operators and investigates some new results in the area of local integral transforms.
A substantial number of problems in physics, chemical physics, and biology, are modeled through reaction-diffusion equations to describe temperature distribution or chemical substance concentration. For problems arising from ecology, sociology, or population dynamics, they describe the density of some populations or species. In this book the state variable is a concentration, or a density according to the cases. The reaction function may be complex and include time delays terms that model various situations involving maturation periods, resource regeneration times, or incubation periods. The dynamics may occur in heterogeneous media and may depend upon a small or large parameter, as well as the reaction term. From a purely formal perspective, these parameters are indexed by n. Therefore, reaction-diffusion equations give rise to sequences of Cauchy problems.The first part of the book is devoted to the convergence of these sequences in a sense made precise in the book. The second part is dedicated to the specific case when the reaction-diffusion problems depend on a small parameter intended to tend towards 0. This parameter accounts for the size of small spatial and randomly distributed heterogeneities. The convergence results obtained in the first part, with additionally some probabilistic tools, are applied to this specific situation. The limit problems are illustrated through biological invasion, food-limited or prey-predator models where the interplay between environment heterogeneities in the individual evolution of propagation species plays an essential role. They provide a description in terms of deterministic and homogeneous reaction-diffusion equations, for which numerical schemes are possible.
Effective Dynamics of Stochastic Partial Differential Equations focuses on stochastic partial differential equations with slow and fast time scales, or large and small spatial scales. The authors have developed basic techniques, such as averaging, slow manifolds, and homogenization, to extract effective dynamics from these stochastic partial differential equations. The authors experience both as researchers and teachers enable
them to convert current research on extracting effective dynamics
of stochastic partial differential equations into concise and
comprehensive chapters. The book helps readers by providing an
accessible introduction to probability tools in Hilbert space and
basics of stochastic partial differential equations. Each chapter
also includes exercises and problems to enhance
comprehension.
"Boundary Element Method for Plate Analysis" offers one of the first systematic and detailed treatments of the application of BEM to plate analysis and design. Aiming to fill in the knowledge gaps left by contributed volumes on the topic and increase the accessibility of the extensive journal literature covering BEM applied to plates, author John T. Katsikadelis draws heavily on his pioneering work in the field to provide a complete introduction to theory and application. Beginning with a chapter of preliminary mathematical background
to make the book a self-contained resource, Katsikadelis moves on
to cover the application of BEM to basic thin plate problems and
more advanced problems. Each chapter contains several examples
described in detail and closes with problems to solve. Presenting
the BEM as an efficient computational method for practical plate
analysis and design, "Boundary Element Method for Plate Analysis"
is a valuable reference for researchers, students and engineers
working with BEM and plate challenges within mechanical, civil,
aerospace and marine engineering.
The Handbook of Mathematical Fluid Dynamics is a compendium of essays that provides a survey of the major topics in the subject. Each article traces developments, surveys the results of the past decade, discusses the current state of knowledge and presents major future directions and open problems. Extensive bibliographic material is provided. The book is intended to be useful both to experts in the field and to mathematicians and other scientists who wish to learn about or begin research in mathematical fluid dynamics. The Handbook illuminates an exciting subject that involves rigorous mathematical theory applied to an important physical problem, namely the motion of fluids.
The book is designed for undergraduate or beginning level graduate students, and students from interdisciplinary areas including engineers, and others who need to use partial differential equations, Fourier series, Fourier and Laplace transforms. The prerequisite is a basic knowledge of calculus, linear algebra, and ordinary differential equations.The textbook aims to be practical, elementary, and reasonably rigorous; the book is concise in that it describes fundamental solution techniques for first order, second order, linear partial differential equations for general solutions, fundamental solutions, solution to Cauchy (initial value) problems, and boundary value problems for different PDEs in one and two dimensions, and different coordinates systems. Analytic solutions to boundary value problems are based on Sturm-Liouville eigenvalue problems and series solutions.The book is accompanied with enough well tested Maple files and some Matlab codes that are available online. The use of Maple makes the complicated series solution simple, interactive, and visible. These features distinguish the book from other textbooks available in the related area.
Handbook of Differential Equations: Evolutionary Equations is the last text of a five-volume reference in mathematics and methodology. This volume follows the format set by the preceding volumes, presenting numerous contributions that reflect the nature of the area of evolutionary partial differential equations. The book is comprised of five chapters that feature the following: A thorough discussion of the shallow-equations theory, which is used as a model for water waves in rivers, lakes and oceans. It covers the issues of modeling, analysis and applications * Evaluation of the singular limits of reaction-diffusion systems, where the reaction is fast compared to the other processes; and applications that range from the theory of the evolution of certain biological processes to the phenomena of Turing and cross-diffusion instability Detailed discussion of numerous problems arising from nonlinear optics, at the high-frequency and high-intensity regime * Geometric and diffractive optics, including wave interactions Presentation of the issues of existence, blow-up and asymptotic stability of solutions, from the equations of solutions to the equations of linear and non-linear thermoelasticity Answers to questions about unique space, such as continuation and backward uniqueness for linear second-order parabolic equations. Research mathematicians, mathematics lecturers and instructors, and academic students will find this book invaluable
This authoritative book presents recent research results on nonlinear problems with lack of compactness. The topics covered include several nonlinear problems in the Euclidean setting as well as variational problems on manifolds. The combination of deep techniques in nonlinear analysis with applications to a variety of problems make this work an essential source of information for researchers and graduate students working in analysis and PDE's.
This handbook is the fourth volume in a series of volumes devoted
to self-contained and up-to-date surveys in the theory of ordinary
differential equations, with an additional effort to achieve
readability for mathematicians and scientists from other related
fields so that the chapters have been made accessible to a wider
audience.
This handbook is the sixth and last volume in the series devoted to
stationary partial differential equations. The topics covered by
this volume include in particular domain perturbations for boundary
value problems, singular solutions of semilinear elliptic problems,
positive solutions to elliptic equations on unbounded domains,
symmetry of solutions, stationary compressible Navier-Stokes
equation, Lotka-Volterra systems with cross-diffusion, and fixed
point theory for elliptic boundary value problems.
A collection of self contained state-of-the art surveys. The
authors have made an effort to achieve readability for
mathematicians and scientists from other fields, for this series of
handbooks to be a new reference for research, learning and
teaching.
While statistical mechanics describe the equilibrium state of systems with many degrees of freedom, and dynamical systems explain the irregular evolution of systems with few degrees of freedom, new tools are needed to study the evolution of systems with many degrees of freedom. This book presents the basic aspects of chaotic systems, with emphasis on systems composed by huge numbers of particles. Firstly, the basic concepts of chaotic dynamics are introduced, moving on to explore the role of ergodicity and chaos for the validity of statistical laws, and ending with problems characterized by the presence of more than one significant scale. Also discussed is the relevance of many degrees of freedom, coarse graining procedure, and instability mechanisms in justifying a statistical description of macroscopic bodies. Introducing the tools to characterize the non asymptotic behaviors of chaotic systems, this text will interest researchers and graduate students in statistical mechanics and chaos.
This volume collects the edited and reviewed contributions presented in the 8th iTi Conference on Turbulence, held in Bertinoro, Italy, in September 2018. In keeping with the spirit of the conference, the book was produced afterwards, so that the authors had the opportunity to incorporate comments and discussions raised during the event. The respective contributions, which address both fundamental and applied aspects of turbulence, have been structured according to the following main topics: I TheoryII Wall-bounded flowsIII Simulations and modellingIV ExperimentsV Miscellaneous topicsVI Wind energy
This handbook is volume III in a series devoted to stationary partial differential quations. Similarly as volumes I and II, it is a collection of self contained state-of-the-art surveys written by well known experts in the field. The topics covered by this handbook include singular and higher order equations, problems near critically, problems with anisotropic nonlinearities, dam problem, T-convergence and Schauder-type estimates. These surveys will be useful for both beginners and experts and speed up the progress of corresponding (rapidly developing and fascinating) areas of mathematics. Key features:
The Keller-Segel model for chemotaxis is a prototype of nonlocal systems describing concentration phenomena in physics and biology. While the two-dimensional theory is by now quite complete, the questions of global-in-time solvability and blowup characterization are largely open in higher dimensions. In this book, global-in-time solutions are constructed under (nearly) optimal assumptions on initial data and rigorous blowup criteria are derived. |
You may like...
Geospatial Abduction - Principles and…
Paulo Shakarian, V.S. Subrahmanian
Hardcover
R1,408
Discovery Miles 14 080
Graham Priest on Dialetheism and…
Can Baskent, Thomas Macaulay Ferguson
Hardcover
R4,363
Discovery Miles 43 630
Fuzzy Mathematical Analysis and Advances…
S. R. Kannan, Mark Last, …
Hardcover
R4,639
Discovery Miles 46 390
Semigroups, Algebras and Operator Theory…
P. G. Romeo, John C. Meakin, …
Hardcover
Visualization in Medicine and Life…
Lars Linsen, Hans Hagen, …
Hardcover
R4,040
Discovery Miles 40 400
Continued Fractions with Applications…
L. Lorentzen, H. Waadeland
Hardcover
R1,386
Discovery Miles 13 860
|