![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Differential equations
Local Fractional Integral Transforms and Their Applications provides information on how local fractional calculus has been successfully applied to describe the numerous widespread real-world phenomena in the fields of physical sciences and engineering sciences that involve non-differentiable behaviors. The methods of integral transforms via local fractional calculus have been used to solve various local fractional ordinary and local fractional partial differential equations and also to figure out the presence of the fractal phenomenon. The book presents the basics of the local fractional derivative operators and investigates some new results in the area of local integral transforms.
This book highlights new developments in the wide and growing field of partial differential equations (PDE)-constrained optimization. Optimization problems where the dynamics evolve according to a system of PDEs arise in science, engineering, and economic applications and they can take the form of inverse problems, optimal control problems or optimal design problems. This book covers new theoretical, computational as well as implementation aspects for PDE-constrained optimization problems under uncertainty, in shape optimization, and in feedback control, and it illustrates the new developments on representative problems from a variety of applications.
Effective Dynamics of Stochastic Partial Differential Equations focuses on stochastic partial differential equations with slow and fast time scales, or large and small spatial scales. The authors have developed basic techniques, such as averaging, slow manifolds, and homogenization, to extract effective dynamics from these stochastic partial differential equations. The authors experience both as researchers and teachers enable
them to convert current research on extracting effective dynamics
of stochastic partial differential equations into concise and
comprehensive chapters. The book helps readers by providing an
accessible introduction to probability tools in Hilbert space and
basics of stochastic partial differential equations. Each chapter
also includes exercises and problems to enhance
comprehension.
The book is designed for undergraduate or beginning level graduate students, and students from interdisciplinary areas including engineers, and others who need to use partial differential equations, Fourier series, Fourier and Laplace transforms. The prerequisite is a basic knowledge of calculus, linear algebra, and ordinary differential equations.The textbook aims to be practical, elementary, and reasonably rigorous; the book is concise in that it describes fundamental solution techniques for first order, second order, linear partial differential equations for general solutions, fundamental solutions, solution to Cauchy (initial value) problems, and boundary value problems for different PDEs in one and two dimensions, and different coordinates systems. Analytic solutions to boundary value problems are based on Sturm-Liouville eigenvalue problems and series solutions.The book is accompanied with enough well tested Maple files and some Matlab codes that are available online. The use of Maple makes the complicated series solution simple, interactive, and visible. These features distinguish the book from other textbooks available in the related area.
Lectures on Differential Equations provides a clear and concise presentation of differential equations for undergraduates and beginning graduate students. There is more than enough material here for a year-long course. In fact, the text developed from the author's notes for three courses: the undergraduate introduction to ordinary differential equations, the undergraduate course in Fourier analysis and partial differential equations, and a first graduate course in differential equations. The first four chapters cover the classical syllabus for the undergraduate ODE course leavened by a modern awareness of computing and qualitative methods. The next two chapters contain a well-developed exposition of linear and nonlinear systems with a similarly fresh approach. The final two chapters cover boundary value problems, Fourier analysis, and the elementary theory of PDEs. The author makes a concerted effort to use plain language and to always start from a simple example or application. The presentation should appeal to, and be readable by, students, especially students in engineering and science. Without being excessively theoretical, the book does address a number of unusual topics: Massera's theorem, Lyapunov's inequality, the isoperimetric inequality, numerical solutions of nonlinear boundary value problems, and more. There are also some new approaches to standard topics including a rethought presentation of series solutions and a nonstandard, but more intuitive, proof of the existence and uniqueness theorem. The collection of problems is especially rich and contains many very challenging exercises. Philip Korman is professor of mathematics at the University of Cincinnati. He is the author of over one hundred research articles in differential equations and the monograph Global Solution Curves for Semilinear Elliptic Equations. Korman has served on the editorial boards of Communications on Applied Nonlinear Analysis, Electronic Journal of Differential Equations, SIAM Review, and Differential Equations and Applications.
This monograph contains papers that were delivered at the special session on Geometric Potential Analysis, that was part of the Mathematical Congress of the Americas 2021, virtually held in Buenos Aires. The papers, that were contributed by renowned specialists worldwide, cover important aspects of current research in geometrical potential analysis and its applications to partial differential equations and mathematical physics.
Handbook of Differential Equations: Evolutionary Equations is the last text of a five-volume reference in mathematics and methodology. This volume follows the format set by the preceding volumes, presenting numerous contributions that reflect the nature of the area of evolutionary partial differential equations. The book is comprised of five chapters that feature the following: A thorough discussion of the shallow-equations theory, which is used as a model for water waves in rivers, lakes and oceans. It covers the issues of modeling, analysis and applications * Evaluation of the singular limits of reaction-diffusion systems, where the reaction is fast compared to the other processes; and applications that range from the theory of the evolution of certain biological processes to the phenomena of Turing and cross-diffusion instability Detailed discussion of numerous problems arising from nonlinear optics, at the high-frequency and high-intensity regime * Geometric and diffractive optics, including wave interactions Presentation of the issues of existence, blow-up and asymptotic stability of solutions, from the equations of solutions to the equations of linear and non-linear thermoelasticity Answers to questions about unique space, such as continuation and backward uniqueness for linear second-order parabolic equations. Research mathematicians, mathematics lecturers and instructors, and academic students will find this book invaluable
The theory of Lyapunov exponents originated over a century ago in the study of the stability of solutions of differential equations. Written by one of the subject's leading authorities, this book is both an account of the classical theory, from a modern view, and an introduction to the significant developments relating the subject to dynamical systems, ergodic theory, mathematical physics and probability. It is based on the author's own graduate course and is reasonably self-contained with an extensive set of exercises provided at the end of each chapter. This book makes a welcome addition to the literature, serving as a graduate text and a valuable reference for researchers in the field.
This authoritative book presents recent research results on nonlinear problems with lack of compactness. The topics covered include several nonlinear problems in the Euclidean setting as well as variational problems on manifolds. The combination of deep techniques in nonlinear analysis with applications to a variety of problems make this work an essential source of information for researchers and graduate students working in analysis and PDE's.
This handbook is the sixth and last volume in the series devoted to
stationary partial differential equations. The topics covered by
this volume include in particular domain perturbations for boundary
value problems, singular solutions of semilinear elliptic problems,
positive solutions to elliptic equations on unbounded domains,
symmetry of solutions, stationary compressible Navier-Stokes
equation, Lotka-Volterra systems with cross-diffusion, and fixed
point theory for elliptic boundary value problems.
This handbook is the fourth volume in a series of volumes devoted
to self-contained and up-to-date surveys in the theory of ordinary
differential equations, with an additional effort to achieve
readability for mathematicians and scientists from other related
fields so that the chapters have been made accessible to a wider
audience.
A collection of self contained state-of-the art surveys. The
authors have made an effort to achieve readability for
mathematicians and scientists from other fields, for this series of
handbooks to be a new reference for research, learning and
teaching.
This book provides a modern survey of some basic properties of Sturm-Liouville problems and to bring the reader to the forefront of knowledge of some areas of the theory. For example, some special Sturm-Liouville eigenvalue problems are equivalent to certain Jacobi and cyclic Jacobi matrix eigenvalue problems. A new approach to problems with periodic conditions is developed.
This book consists of three volumes. The first volume contains introductory accounts of topological dynamical systems, fi nite-state symbolic dynamics, distance expanding maps, and ergodic theory of metric dynamical systems acting on probability measure spaces, including metric entropy theory of Kolmogorov and Sinai. More advanced topics comprise infi nite ergodic theory, general thermodynamic formalism, topological entropy and pressure. Thermodynamic formalism of distance expanding maps and countable-alphabet subshifts of fi nite type, graph directed Markov systems, conformal expanding repellers, and Lasota-Yorke maps are treated in the second volume, which also contains a chapter on fractal geometry and its applications to conformal systems. Multifractal analysis and real analyticity of pressure are also covered. The third volume is devoted to the study of dynamics, ergodic theory, thermodynamic formalism and fractal geometry of rational functions of the Riemann sphere.
This two-volume set presents combinatorial functional equations using an algebraic approach, and illustrates their applications in combinatorial maps, graphs, networks, etc. The first volume mainly presents basic concepts and the theoretical background. Differential (ordinary and partial) equations and relevant topics are discussed in detail.
This handbook is volume III in a series devoted to stationary partial differential quations. Similarly as volumes I and II, it is a collection of self contained state-of-the-art surveys written by well known experts in the field. The topics covered by this handbook include singular and higher order equations, problems near critically, problems with anisotropic nonlinearities, dam problem, T-convergence and Schauder-type estimates. These surveys will be useful for both beginners and experts and speed up the progress of corresponding (rapidly developing and fascinating) areas of mathematics. Key features:
The book contains a detailed treatment of thermodynamic formalism on general compact metrizable spaces. Topological pressure, topological entropy, variational principle, and equilibrium states are presented in detail. Abstract ergodic theory is also given a significant attention. Ergodic theorems, ergodicity, and Kolmogorov-Sinai metric entropy are fully explored. Furthermore, the book gives the reader an opportunity to find rigorous presentation of thermodynamic formalism for distance expanding maps and, in particular, subshifts of finite type over a finite alphabet. It also provides a fairly complete treatment of subshifts of finite type over a countable alphabet. Transfer operators, Gibbs states and equilibrium states are, in this context, introduced and dealt with. Their relations are explored. All of this is applied to fractal geometry centered around various versions of Bowen's formula in the context of expanding conformal repellors, limit sets of conformal iterated function systems and conformal graph directed Markov systems. A unique introduction to iteration of rational functions is given with emphasize on various phenomena caused by rationally indifferent periodic points. Also, a fairly full account of the classicaltheory of Shub's expanding endomorphisms is given; it does not have a book presentation in English language mathematical literature. |
You may like...
Advanced Introduction to Employee…
Alan M. Saks, Jamie A. Gruman
Paperback
R764
Discovery Miles 7 640
The Scientific Counter-Revolution - The…
Michael John Gorman
Hardcover
R3,349
Discovery Miles 33 490
|