Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Differential equations
This book provides a comprehensive examination of preconditioners for boundary element discretisations of first-kind integral equations. Focusing on domain-decomposition-type and multilevel methods, it allows readers to gain a good understanding of the mechanisms and necessary techniques in the analysis of the preconditioners. These techniques are unique for the discretisation of first-kind integral equations since the resulting systems of linear equations are not only large and ill-conditioned, but also dense. The book showcases state-of-the-art preconditioning techniques for boundary integral equations, presenting up-to-date research. It also includes a detailed discussion of Sobolev spaces of fractional orders to familiarise readers with important mathematical tools for the analysis. Furthermore, the concise overview of adaptive BEM, hp-version BEM, and coupling of FEM-BEM provides efficient computational tools for solving practical problems with applications in science and engineering.
The present volume contains the Proceedings of the Seventh Iberoamerican Workshop in Orthogonal Polynomials and Applications (EIBPOA, which stands for Encuentros Iberoamericanos de Polinomios Ortogonales y Aplicaciones, in Spanish), held at the Universidad Carlos III de Madrid, Leganes, Spain, from July 3 to July 6, 2018.These meetings were mainly focused to encourage research in the fields of approximation theory, special functions, orthogonal polynomials and their applications among graduate students as well as young researchers from Latin America, Spain and Portugal. The presentation of the state of the art as well as some recent trends constitute the aim of the lectures delivered in the EIBPOA by worldwide recognized researchers in the above fields.In this volume, several topics on the theory of polynomials orthogonal with respect to different inner products are analyzed, both from an introductory point of view for a wide spectrum of readers without an expertise in the area, as well as the emphasis on their applications in topics as integrable systems, random matrices, numerical methods in differential and partial differential equations, coding theory, and signal theory, among others.
Sparse grids are a popular tool for the numerical treatment of high-dimensional problems. Where classical numerical discretization schemes fail in more than three or four dimensions, sparse grids, in their different flavors, are frequently the method of choice. This volume of LNCSE presents selected papers from the proceedings of the fifth workshop on sparse grids and applications, and demonstrates once again the importance of this numerical discretization scheme. The articles present recent advances in the numerical analysis of sparse grids in connection with a range of applications including uncertainty quantification, plasma physics simulations, and computational chemistry, to name but a few.
This authoritative book presents recent research results on nonlinear problems with lack of compactness. The topics covered include several nonlinear problems in the Euclidean setting as well as variational problems on manifolds. The combination of deep techniques in nonlinear analysis with applications to a variety of problems make this work an essential source of information for researchers and graduate students working in analysis and PDE's.
This book provides a modern survey of some basic properties of Sturm-Liouville problems and to bring the reader to the forefront of knowledge of some areas of the theory. For example, some special Sturm-Liouville eigenvalue problems are equivalent to certain Jacobi and cyclic Jacobi matrix eigenvalue problems. A new approach to problems with periodic conditions is developed.
The book contains a detailed treatment of thermodynamic formalism on general compact metrizable spaces. Topological pressure, topological entropy, variational principle, and equilibrium states are presented in detail. Abstract ergodic theory is also given a significant attention. Ergodic theorems, ergodicity, and Kolmogorov-Sinai metric entropy are fully explored. Furthermore, the book gives the reader an opportunity to find rigorous presentation of thermodynamic formalism for distance expanding maps and, in particular, subshifts of finite type over a finite alphabet. It also provides a fairly complete treatment of subshifts of finite type over a countable alphabet. Transfer operators, Gibbs states and equilibrium states are, in this context, introduced and dealt with. Their relations are explored. All of this is applied to fractal geometry centered around various versions of Bowen's formula in the context of expanding conformal repellors, limit sets of conformal iterated function systems and conformal graph directed Markov systems. A unique introduction to iteration of rational functions is given with emphasize on various phenomena caused by rationally indifferent periodic points. Also, a fairly full account of the classicaltheory of Shub's expanding endomorphisms is given; it does not have a book presentation in English language mathematical literature.
This monograph introduces breakthrough control algorithms for partial differential equation models with moving boundaries, the study of which is known as the Stefan problem. The algorithms can be used to improve the performance of various processes with phase changes, such as additive manufacturing. Using the authors' innovative design solutions, readers will also be equipped to apply estimation algorithms for real-world phase change dynamics, from polar ice to lithium-ion batteries. A historical treatment of the Stefan problem opens the book, situating readers in the larger context of the area. Following this, the chapters are organized into two parts. The first presents the design method and analysis of the boundary control and estimation algorithms. Part two then explores a number of applications, such as 3D printing via screw extrusion and laser sintering, and also discusses the experimental verifications conducted. A number of open problems and provided as well, offering readers multiple paths to explore in future research. Materials Phase Change PDE Control & Estimation is ideal for researchers and graduate students working on control and dynamical systems, and particularly those studying partial differential equations and moving boundaries. It will also appeal to industrial engineers and graduate students in engineering who are interested in this area.
Considering that the motion of strings with finitely many masses on them is described by difference equations, this book presents the spectral theory of such problems on finite graphs of strings. The direct problem of finding the eigenvalues as well as the inverse problem of finding strings with a prescribed spectrum are considered. This monograph gives a comprehensive and self-contained account on the subject, thereby also generalizing known results. The interplay between the representation of rational functions and their zeros and poles is at the center of the methods used. The book also unravels connections between finite dimensional and infinite dimensional spectral problems on graphs, and between self-adjoint and non-self-adjoint finite-dimensional problems. This book is addressed to researchers in spectral theory of differential and difference equations as well as physicists and engineers who may apply the presented results and methods to their research.
This book addresses the global study of finite and infinite singularities of planar polynomial differential systems, with special emphasis on quadratic systems. While results covering the degenerate cases of singularities of quadratic systems have been published elsewhere, the proofs for the remaining harder cases were lengthier. This book covers all cases, with half of the content focusing on the last non-degenerate ones. The book contains the complete bifurcation diagram, in the 12-parameter space, of global geometrical configurations of singularities of quadratic systems. The authors' results provide - for the first time - global information on all singularities of quadratic systems in invariant form and their bifurcations. In addition, a link to a very helpful software package is included. With the help of this software, the study of the algebraic bifurcations becomes much more efficient and less time-consuming. Given its scope, the book will appeal to specialists on polynomial differential systems, pure and applied mathematicians who need to study bifurcation diagrams of families of such systems, Ph.D. students, and postdoctoral fellows.
This contributed volume showcases research and survey papers devoted to a broad range of topics on functional equations, ordinary differential equations, partial differential equations, stochastic differential equations, optimization theory, network games, generalized Nash equilibria, critical point theory, calculus of variations, nonlinear functional analysis, convex analysis, variational inequalities, topology, global differential geometry, curvature flows, perturbation theory, numerical analysis, mathematical finance and a variety of applications in interdisciplinary topics. Chapters in this volume investigate compound superquadratic functions, the Hyers-Ulam Stability of functional equations, edge degenerate pseudo-hyperbolic equations, Kirchhoff wave equation, BMO norms of operators on differential forms, equilibrium points of the perturbed R3BP, complex zeros of solutions to second order differential equations, a higher-order Ginzburg-Landau-type equation, multi-symplectic numerical schemes for differential equations, the Erdos-Renyi network model, strongly m-convex functions, higher order strongly generalized convex functions, factorization and solution of second order differential equations, generalized topologically open sets in relator spaces, graphical mean curvature flow, critical point theory in infinite dimensional spaces using the Leray-Schauder index, non-radial solutions of a supercritical equation in expanding domains, the semi-discrete method for the approximation of the solution of stochastic differential equations, homotopic metric-interval L-contractions in gauge spaces, Rhoades contractions theory, network centrality measures, the Radon transform in three space dimensions via plane integration and applications in positron emission tomography boundary perturbations on medical monitoring and imaging techniques, the KdV-B equation and biomedical applications.
This book emphasizes those topological methods (of dynamical systems) and theories that are useful in the study of different classes of nonautonomous evolutionary equations. The content is developed over six chapters, providing a thorough introduction to the techniques used in the Chapters III-VI described by Chapter I-II. The author gives a systematic treatment of the basic mathematical theory and constructive methods for Nonautonomous Dynamics. They show how these diverse topics are connected to other important parts of mathematics, including Topology, Functional Analysis and Qualitative Theory of Differential/Difference Equations. Throughout the book a nice balance is maintained between rigorous mathematics and applications (ordinary differential/difference equations, functional differential equations and partial difference equations). The primary readership includes graduate and PhD students and researchers in in the field of dynamical systems and their applications (control theory, economic dynamics, mathematical theory of climate, population dynamics, oscillation theory etc).
This book is devoted to the analysis of the basic boundary value problems for the Laplace equation in singularly perturbed domains. The main purpose is to illustrate a method called Functional Analytic Approach, to describe the dependence of the solutions upon a singular perturbation parameter in terms of analytic functions. Here the focus is on domains with small holes and the perturbation parameter is the size of the holes. The book is the first introduction to the topic and covers the theoretical material and its applications to a series of problems that range from simple illustrative examples to more involved research results. The Functional Analytic Approach makes constant use of the integral representation method for the solutions of boundary value problems, of Potential Theory, of the Theory of Analytic Functions both in finite and infinite dimension, and of Nonlinear Functional Analysis. Designed to serve various purposes and readerships, the extensive introductory part spanning Chapters 1-7 can be used as a reference textbook for graduate courses on classical Potential Theory and its applications to boundary value problems. The early chapters also contain results that are rarely presented in the literature and may also, therefore, attract the interest of more expert readers. The exposition moves on to introduce the Functional Analytic Approach. A reader looking for a quick introduction to the method can find simple illustrative examples specifically designed for this purpose. More expert readers will find a comprehensive presentation of the Functional Analytic Approach, which allows a comparison between the approach of the book and the more classical expansion methods of Asymptotic Analysis and offers insights on the specific features of the approach and its applications to linear and nonlinear boundary value problems.
This is an indispensable reference for those mathematicians that conduct research activity in applications of fixed-point theory to boundary value problems for nonlinear functional equations. Coverage includes second-order finite difference equations and systems of difference equations subject to multi-point boundary conditions, various methods to study the existence of positive solutions for difference equations, and Green functions.
This volume collects the edited and reviewed contributions presented in the 8th iTi Conference on Turbulence, held in Bertinoro, Italy, in September 2018. In keeping with the spirit of the conference, the book was produced afterwards, so that the authors had the opportunity to incorporate comments and discussions raised during the event. The respective contributions, which address both fundamental and applied aspects of turbulence, have been structured according to the following main topics: I TheoryII Wall-bounded flowsIII Simulations and modellingIV ExperimentsV Miscellaneous topicsVI Wind energy
This two-volume set presents combinatorial functional equations using an algebraic approach, and illustrates their applications in combinatorial maps, graphs, networks, etc. The first volume mainly presents basic concepts and the theoretical background. Differential (ordinary and partial) equations and relevant topics are discussed in detail.
The Keller-Segel model for chemotaxis is a prototype of nonlocal systems describing concentration phenomena in physics and biology. While the two-dimensional theory is by now quite complete, the questions of global-in-time solvability and blowup characterization are largely open in higher dimensions. In this book, global-in-time solutions are constructed under (nearly) optimal assumptions on initial data and rigorous blowup criteria are derived.
Wave phenomena are ubiquitous in nature. Their mathematical modeling, simulation and analysis lead to fascinating and challenging problems in both analysis and numerical mathematics. These challenges and their impact on significant applications have inspired major results and methods about wave-type equations in both fields of mathematics. The Conference on Mathematics of Wave Phenomena 2018 held in Karlsruhe, Germany, was devoted to these topics and attracted internationally renowned experts from a broad range of fields. These conference proceedings present new ideas, results, and techniques from this exciting research area.
This is an introductory level textbook for partial differential equations (PDEs). It is suitable for a one-semester undergraduate level or two-semester graduate level course in PDEs or applied mathematics. This volume is application-oriented and rich in examples. Going through these examples, the reader is able to easily grasp the basics of PDEs.Chapters One to Five are organized to aid understanding of the basic PDEs. They include the first-order equations and the three fundamental second-order equations, i.e. the heat, wave and Laplace equations. Through these equations, we learn the types of problems, how we pose the problems, and the methods of solutions such as the separation of variables and the method of characteristics. The modeling aspects are explained as well. The methods introduced in earlier chapters are developed further in Chapters Six to Twelve. They include the Fourier series, the Fourier and the Laplace transforms, and the Green's functions. Equations in higher dimensions are also discussed in detail. In this second edition, a new chapter is added and numerous improvements have been made including the reorganization of some chapters. Extensions of nonlinear equations treated in earlier chapters are also discussed.Partial differential equations are becoming a core subject in Engineering and the Sciences. This textbook will greatly benefit those studying in these subjects by covering basic and advanced topics in PDEs based on applications.
The study of nonlinear dynamical systems has exploded in the past 25 years, and Robert L. Devaney has made these advanced research developments accessible to undergraduate and graduate mathematics students as well as researchers in other disciplines with the introduction of this widely praised book. In this second edition of his best-selling text, Devaney includes new material on the orbit diagram fro maps of the interval and the Mandelbrot set, as well as striking color photos illustrating both Julia and Mandelbrot sets. This book assumes no prior acquaintance with advanced mathematical topics such as measure theory, topology, and differential geometry. Assuming only a knowledge of calculus, Devaney introduces many of the basic concepts of modern dynamical systems theory and leads the reader to the point of current research in several areas.
This monograph presents a technique, developed by the author, to design asymptotically exponentially stabilizing finite-dimensional boundary proportional-type feedback controllers for nonlinear parabolic-type equations. The potential control applications of this technique are wide ranging in many research areas, such as Newtonian fluid flows modeled by the Navier-Stokes equations; electrically conducted fluid flows; phase separation modeled by the Cahn-Hilliard equations; and deterministic or stochastic semi-linear heat equations arising in biology, chemistry, and population dynamics modeling. The text provides answers to the following problems, which are of great practical importance: Designing the feedback law using a minimal set of eigenfunctions of the linear operator obtained from the linearized equation around the target state Designing observers for the considered control systems Constructing time-discrete controllers requiring only partial knowledge of the state After reviewing standard notations and results in functional analysis, linear algebra, probability theory and PDEs, the author describes his novel stabilization algorithm. He then demonstrates how this abstract model can be applied to stabilization problems involving magnetohydrodynamic equations, stochastic PDEs, nonsteady-states, and more. Boundary Stabilization of Parabolic Equations will be of particular interest to researchers in control theory and engineers whose work involves systems control. Familiarity with linear algebra, operator theory, functional analysis, partial differential equations, and stochastic partial differential equations is required. |
You may like...
Differential Equations with Linear…
Matthew R. Boelkins, Jack L. Goldberg, …
Hardcover
R2,832
Discovery Miles 28 320
Complexity in Biological and Physical…
Ricardo Lopez-Ruiz
Hardcover
Differential Equations and Linear…
C. Edwards, David Penney, …
Paperback
R2,385
Discovery Miles 23 850
Differential Equations with…
Warren Wright, Dennis Zill
Paperback
(1)
Schaum's Outline of Differential…
Richard Bronson, Gabriel B Costa
Paperback
R436
Discovery Miles 4 360
|