![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Differential equations
This is a proceedings of the international conference "Painleve Equations and Related Topics" which was taking place at the Euler International Mathematical Institute, a branch of the Saint Petersburg Department of the Steklov Institute of Mathematics of the Russian Academy of Sciences, in Saint Petersburg on June 17 to 23, 2011. The survey articles discuss the following topics: General ordinary differential equations Painleve equations and their generalizations Painleve property Discrete Painleve equations Properties of solutions of all mentioned above equations: - Asymptotic forms and asymptotic expansions - Connections of asymptotic forms of a solution near different points - Convergency and asymptotic character of a formal solution - New types of asymptotic forms and asymptotic expansions - Riemann-Hilbert problems - Isomonodromic deformations of linear systems - Symmetries and transformations of solutions - Algebraic solutions Reductions of PDE to Painleve equations and their generalizations Ordinary Differential Equations systems equivalent to Painleve equations and their generalizations Applications of the equations and the solutions
During its 2004 meeting in Warsaw the General Assembly of the International Union of Theoretical and Applied Mechanics (IUTAM) decided to support a proposal of the Georgian National Committee to hold in Tbilisi (Georgia), on April 23-27, 2007, the IUTAM Symposium on the Relation of Shell, Plate, Beam, and 3D Models, dedicated to the Centenary of Ilia Vekua. The sci- ti?c organization was entrusted to an international committee consisting of Philipppe G. Ciarlet (Hong Kong), the late Anatoly Gerasimovich Gorshkov (Russia),JornHansen(Canada),GeorgeV.Jaiani(Georgia,Chairman),Re- hold Kienzler (Germany), Herbert A. Mang (Austria), Paolo Podio-Guidugli (Italy), and Gangan Prathap (India). The main topics to be included in the scienti?c programme were c- sen to be: hierarchical, re?ned mathematical and technical models of shells, plates, and beams; relation of 2D and 1D models to 3D linear, non-linear and physical models; junction problems. The main aim of the symposium was to thoroughly discuss the relations of shell, plate, and beam models to the 3D physicalmodels.Inparticular,peculiaritiesofcuspedshells,plates,andbeams were to be emphasized and special attention paid to junction, multibody and ? uid-elastic shell (plate, beam) interaction problems, and their applications. The expected contributions of the invited participants were anticipated to be theoretical, practical, and numerical in character.
The numerical analysis of stochastic differential equations (SDEs) differs significantly from that of ordinary differential equations. This book provides an easily accessible introduction to SDEs, their applications and the numerical methods to solve such equations. From the reviews: "The authors draw upon their own research and experiences in obviously many disciplines... considerable time has obviously been spent writing this in the simplest language possible." --ZAMP
Scientific Computing and Differential Equations: An Introduction to
Numerical Methods, is an excellent complement to Introduction to
Numerical Methods by Ortega and Poole. The book emphasizes the
importance of solving differential equations on a computer, which
comprises a large part of what has come to be called scientific
computing. It reviews modern scientific computing, outlines its
applications, and places the subject in a larger context. * An introductory chapter gives an overview of scientific
computing, indicating its important role in solving differential
equations, and placing the subject in the larger environment
Let 8 be a Riemann surface of analytically finite type (9, n) with 29 - 2+n> O. Take two pointsP1, P2 E 8, and set 8 ,1>2= 8 \ {P1' P2}. Let PI Homeo+(8;P1,P2) be the group of all orientation preserving homeomor- phismsw: 8 -+ 8 fixingP1, P2 and isotopic to the identity on 8. Denote byHomeot(8;Pb P2) the set of all elements ofHomeo+(8;P1, P2) iso- topic to the identity on 8 ,P2' ThenHomeot(8;P1,P2) is a normal sub- pl group ofHomeo+(8;P1,P2). We setIsot(8;P1,P2) =Homeo+(8;P1,P2)/ Homeot(8;p1, P2). The purpose of this note is to announce a result on the Nielsen- Thurston-Bers type classification of an element [w] ofIsot+(8;P1,P2). We give a necessary and sufficient condition for thetypeto be hyperbolic. The condition is described in terms of properties of the pure braid [b ] w induced by [w]. Proofs will appear elsewhere. The problem considered in this note and the form ofthe solution are suggested by Kra's beautiful theorem in [6], where he treats self-maps of Riemann surfaces with one specified point. 2 TheclassificationduetoBers Let us recall the classification of elements of the mapping class group due to Bers (see Bers [1]). LetT(R) be the Teichmiiller space of a Riemann surfaceR, andMod(R) be the Teichmtiller modular group of R. Note that an orientation preserving homeomorphism w: R -+ R induces canonically an element (w) EMod(R). Denote by&.r(R)(*,.) the Teichmiiller distance onT(R). For an elementXEMod(R), we define a(x)= inf &.r(R)(r,x(r)).
Covering one of the fastest growing areas of applied mathematics, Nonlinear Dynamics and Chaos: Second Edition, is a fully updated edition of this highly respected text. Covering a breadth of topics, ranging from the basic concepts to applications in the physical sciences, the book is highly illustrated and written in a clear and comprehensible style.
The main focus of this book is on different topics in probability theory, partial differential equations and kinetic theory, presenting some of the latest developments in these fields. It addresses mathematical problems concerning applications in physics, engineering, chemistry and biology that were presented at the Third International Conference on Particle Systems and Partial Differential Equations, held at the University of Minho, Braga, Portugal in December 2014. The purpose of the conference was to bring together prominent researchers working in the fields of particle systems and partial differential equations, providing a venue for them to present their latest findings and discuss their areas of expertise. Further, it was intended to introduce a vast and varied public, including young researchers, to the subject of interacting particle systems, its underlying motivation, and its relation to partial differential equations. This book will appeal to probabilists, analysts and those mathematicians whose work involves topics in mathematical physics, stochastic processes and differential equations in general, as well as those physicists whose work centers on statistical mechanics and kinetic theory.
The topic of the 2010 Abel Symposium, hosted at the Norwegian Academy of Science and Letters, Oslo, was Nonlinear Partial Differential Equations, the study of which is of fundamental importance in mathematics and in almost all of natural sciences, economics, and engineering. This area of mathematics is currently in the midst of an unprecedented development worldwide. Differential equations are used to model phenomena of increasing complexity, and in areas that have traditionally been outside the realm of mathematics. New analytical tools and numerical methods are dramatically improving our understanding of nonlinear models. Nonlinearity gives rise to novel effects reflected in the appearance of shock waves, turbulence, material defects, etc., and offers challenging mathematical problems. On the other hand, new mathematical developments provide new insight in many applications. These proceedings present a selection of the latest exciting results by world leading researchers.
This book is the Proceedings of the Second ISAAC Congress. ISAAC is the acronym of the International Society for Analysis, its Applications and Computation. The president of ISAAC is Professor Robert P. Gilbert, the second named editor of this book, e-mail: [email protected]. The Congress is world-wide valued so highly that an application for a grant has been selected and this project has been executed with Grant No. 11-56 from *the Commemorative Association for the Japan World Exposition (1970). The finance of the publication of this book is exclusively the said Grant No. 11-56 from *. Thus, a pair of each one copy of two volumes of this book will be sent to all contributors, who registered at the Second ISAAC Congress in Fukuoka, free of charge by the Kluwer Academic Publishers. Analysis is understood here in the broad sense of the word, includ ing differential equations, integral equations, functional analysis, and function theory. It is the purpose of ISAAC to promote analysis, its applications, and its interaction with computation. With this objective, ISAAC organizes international Congresses for the presentation and dis cussion of research on analysis. ISAAC welcomes new members and those interested in joining ISAAC are encouraged to look at the web site http: //www .math. udel.edu/ gilbert/isaac/index.html vi and http: //www.math.fu-berlin.de/ rd/ ag/isaac/newton/index.html."
This book investigates the mathematical analysis of biological invasions. Unlike purely qualitative treatments of ecology, it draws on mathematical theory and methods, equipping the reader with sharp tools and rigorous methodology. Subjects include invasion dynamics, species interactions, population spread, long-distance dispersal, stochastic effects, risk analysis, and optimal responses to invaders. While based on the theory of dynamical systems, including partial differential equations and integrodifference equations, the book also draws on information theory, machine learning, Monte Carlo methods, optimal control, statistics, and stochastic processes. Applications to real biological invasions are included throughout. Ultimately, the book imparts a powerful principle: that by bringing ecology and mathematics together, researchers can uncover new understanding of, and effective response strategies to, biological invasions. It is suitable for graduate students and established researchers in mathematical ecology.
The international workshop on which this proceedings volume is based on brought together leading researchers in the field of elliptic and parabolic equations. Particular emphasis was put on the interaction between well-established scientists and emerging young mathematicians, as well as on exploring new connections between pure and applied mathematics. The volume contains material derived after the workshop taking up the impetus to continue collaboration and to incorporate additional new results and insights.
Ill-posed problems are encountered in countless areas of real world science and technology. A variety of processes in science and engineering is commonly modeled by algebraic, differential, integral and other equations. In a more difficult case, it can be systems of equations combined with the associated initial and boundary conditions. Frequently, the study of applied optimization problems is also reduced to solving the corresponding equations. These equations, encountered both in theoretical and applied areas, may naturally be classified as operator equations. The current textbook will focus on iterative methods for operator equations in Hilbert spaces.
This is the first book on the subject of the periodic unfolding method (originally called "eclatement periodique" in French), which was originally developed to clarify and simplify many questions arising in the homogenization of PDE's. It has since led to the solution of some open problems. Written by the three mathematicians who developed the method, the book presents both the theory as well as numerous examples of applications for partial differential problems with rapidly oscillating coefficients: in fixed domains (Part I), in periodically perforated domains (Part II), and in domains with small holes generating a strange term (Part IV). The method applies to the case of multiple microscopic scales (with finitely many distinct scales) which is connected to partial unfolding (also useful for evolution problems). This is discussed in the framework of oscillating boundaries (Part III). A detailed example of its application to linear elasticity is presented in the case of thin elastic plates (Part V). Lastly, a complete determination of correctors for the model problem in Part I is obtained (Part VI). This book can be used as a graduate textbook to introduce the theory of homogenization of partial differential problems, and is also a must for researchers interested in this field.
Stochastic differential equations (SDEs) are a powerful tool in science, mathematics, economics and finance. This book will help the reader to master the basic theory and learn some applications of SDEs. In particular, the reader will be provided with the backward SDE technique for use in research when considering financial problems in the market, and with the reflecting SDE technique to enable study of optimal stochastic population control problems. These two techniques are powerful and efficient, and can also be applied to research in many other problems in nature, science and elsewhere.
Many physical phenomena are described by nonlinear evolution
equation. Those that are integrable provide various mathematical
methods, presented by experts in this tutorial book, to find
special analytic solutions to both integrable and partially
integrable equations. The direct method to build solutions includes
the analysis of singularities a la Painleve, Lie symmetries leaving
the equation invariant, extension of the Hirota method,
construction of the nonlinear superposition formula. The main
inverse method described here relies on the bi-hamiltonian
structure of integrable equations. The book also presents some
extension to equations with discrete independent and dependent
variables.
This book is an interdisciplinary introduction to optical collapse of laser beams, which is modelled by singular (blow-up) solutions of the nonlinear Schroedinger equation. With great care and detail, it develops the subject including the mathematical and physical background and the history of the subject. It combines rigorous analysis, asymptotic analysis, informal arguments, numerical simulations, physical modelling, and physical experiments. It repeatedly emphasizes the relations between these approaches, and the intuition behind the results. The Nonlinear Schroedinger Equation will be useful to graduate students and researchers in applied mathematics who are interested in singular solutions of partial differential equations, nonlinear optics and nonlinear waves, and to graduate students and researchers in physics and engineering who are interested in nonlinear optics and Bose-Einstein condensates. It can be used for courses on partial differential equations, nonlinear waves, and nonlinear optics. Gadi Fibich is a Professor of Applied Mathematics at Tel Aviv University. "This book provides a clear presentation of the nonlinear Schrodinger equation and its applications from various perspectives (rigorous analysis, informal analysis, and physics). It will be extremely useful for students and researchers who enter this field." Frank Merle, Universite de Cergy-Pontoise and Institut des Hautes Etudes Scientifiques, France
This volume consists of papers presented in the special sessions on "Complex and Numerical Analysis," "Value Distribution Theory and Complex Domains," and "Use of Symbolic Computation in Mathematics Education" of the ISAAC'97 Congress held at the University of Delaware, during June 2-7, 1997. The ISAAC Congress coincided with a U.S.-Japan Seminar also held at the University of Delaware. The latter was supported by the National Science Foundation through Grant INT-9603029 and the Japan Society for the Promotion of Science through Grant MTCS-134. It was natural that the participants of both meetings should interact and consequently several persons attending the Congress also presented papers in the Seminar. The success of the ISAAC Congress and the U.S.-Japan Seminar has led to the ISAAC'99 Congress being held in Fukuoka, Japan during August 1999. Many of the same participants will return to this Seminar. Indeed, it appears that the spirit of the U.S.-Japan Seminar will be continued every second year as part of the ISAAC Congresses. We decided to include with the papers presented in the ISAAC Congress and the U.S.-Japan Seminar several very good papers by colleagues from the former Soviet Union. These participants in the ISAAC Congress attended at their own expense.
This volume introduces a unified, self-contained study of linear discrete parabolic problems through reducing the starting discrete problem to the Cauchy problem for an evolution equation in discrete time. Accessible to beginning graduate students, the book contains a general stability theory of discrete evolution equations in Banach space and gives applications of this theory to the analysis of various classes of modern discretization methods, among others, Runge-Kutta and linear multistep methods as well as operator splitting methods.
Integral equations have wide applications in various fields, including continuum mechanics, potential theory, geophysics, electricity and magnetism, kinetic theory of gases, hereditary phenomena in physics and biology, renewal theory, quantum mechanics, radiation, optimization, optimal control systems, communication theory, mathematical economics, population genetics, queueing theory, and medicine. Computational Methods for Linear Integral Equations presents basic theoretical material that deals with numerical analysis, convergence, error estimates, and accuracy. The unique computational aspect leads the reader from theoretical and practical problems all the way through to computation with hands-on guidance for input files and the execution of computer programs. Features: * Offers all supporting MathematicaA(R) files related to the book via the Internet at the authors' Web sites: www.math.uno.edu/fac/pkythe.html or www.math.uno.edu/fac/ppuri.html * Contains identification codes for problems, related methods, and computer programs that are cross-referenced throughout the book to make the connections easy to understand * Illustrates a how-to approach to computational work in the development of algorithms, construction of input files, timing, and accuracy analysis * Covers linear integral equations of Fredholm and Volterra types of the first and second kinds as well as associated singular integral equations, integro-differential equations, and eigenvalue problems * Provides clear, step-by-step guidelines for solving difficult and complex computational problems This book is an essential reference and authoritative resource for all professionals, graduate students, and researchers in mathematics, physical sciences, and engineering. Researchers interested in the numerical solution of integral equations will find its practical problem-solving style both accessible and useful for their work.
This book provides a comprehensive advanced multi-linear algebra course based on the concept of Hasse-Schmidt derivations on a Grassmann algebra (an analogue of the Taylor expansion for real-valued functions), and shows how this notion provides a natural framework for many ostensibly unrelated subjects: traces of an endomorphism and the Cayley-Hamilton theorem, generic linear ODEs and their Wronskians, the exponential of a matrix with indeterminate entries (Putzer's method revisited), universal decomposition of a polynomial in the product of two monic polynomials of fixed smaller degree, Schubert calculus for Grassmannian varieties, and vertex operators obtained with the help of Schubert calculus tools (Giambelli's formula). Significant emphasis is placed on the characterization of decomposable tensors of an exterior power of a free abelian group of possibly infinite rank, which then leads to the celebrated Hirota bilinear form of the Kadomtsev-Petviashvili (KP) hierarchy describing the Plucker embedding of an infinite-dimensional Grassmannian. By gathering ostensibly disparate issues together under a unified perspective, the book reveals how even the most advanced topics can be discovered at the elementary level.
The asymptotic theory deals with the problern of determining the behaviour of a function in a neighborhood of its singular point. The function is replaced by another known function ( named the asymptotic function) close (in a sense) to the function under consideration. Many problems of mathematics, physics, and other divisions of natural sci ence bring out the necessity of solving such problems. At the present time asymptotic theory has become an important and independent branch of mathematical analysis. The present consideration is mainly based on the theory of asymp totic spaces. Each asymptotic space is a collection of asymptotics united by an associated real function which determines their growth near the given point and (perhaps) some other analytic properties. The main contents of this book is the asymptotic theory of ordinary linear differential equations with variable coefficients. The equations with power order growth coefficients are considered in detail. As the application of the theory of differential asymptotic fields, we also consider the following asymptotic problems: the behaviour of explicit and implicit functions, improper integrals, integrals dependent on a large parameter, linear differential and difference equations, etc .. The obtained results have an independent meaning. The reader is assumed to be familiar with a comprehensive course of the mathematical analysis studied, for instance at mathematical departments of universities. Further necessary information is given in this book in summarized form with proofs of the main aspects."
Featuring the clearly presented and expertly-refereed contributions of leading researchers in the field of approximation theory, this volume is a collection of the best contributions at the Third International Conference on Applied Mathematics and Approximation Theory, an international conference held at TOBB University of Economics and Technology in Ankara, Turkey, on May 28-31, 2015. The goal of the conference, and this volume, is to bring together key work from researchers in all areas of approximation theory, covering topics such as ODEs, PDEs, difference equations, applied analysis, computational analysis, signal theory, positive operators, statistical approximation, fuzzy approximation, fractional analysis, semigroups, inequalities, special functions and summability. These topics are presented both within their traditional context of approximation theory, while also focusing on their connections to applied mathematics. As a result, this collection will be an invaluable resource for researchers in applied mathematics, engineering and statistics.
The first edition (94301-3) was published in 1995 in TIMS and had 2264 regular US sales, 928 IC, and 679 bulk. This new edition updates the text to Mathematica 5.0 and offers a more extensive treatment of linear algebra. It has been thoroughly revised and corrected throughout.
Mathematical modeling and numerical simulation in fluid mechanics are topics of great importance both in theory and technical applications. The present book attempts to describe the current status in various areas of research. The 10 chapters, mostly survey articles, are written by internationally renowned specialists and offer a range of approaches to and views of the essential questions and problems. In particular, the theories of incompressible and compressible Navier-Stokes equations are considered, as well as stability theory and numerical methods in fluid mechanics. Although the book is primarily written for researchers in the field, it will also serve as a valuable source of information to graduate students.
This volume of the Encyclopaedia contains three contributions in the field of complex analysis. The topics treated are mean periodicity and convolutionequations, Yang-Mills fields and the Radon-Penrose transform, and stringtheory. The latter two have strong links with quantum field theory and the theory of general relativity. In fact, the mathematical results described inthe book arose from the need of physicists to find a sound mathematical basis for their theories. The authors present their material in the formof surveys which provide up-to-date accounts of current research. The book will be immensely useful to graduate students and researchers in complex analysis, differential geometry, quantum field theory, string theoryand general relativity. |
![]() ![]() You may like...
Nonlinear Optimization in Finite…
Hubertus Th. Jongen, P. Jonker, …
Hardcover
R6,621
Discovery Miles 66 210
Empire Of Pain - The Secret History of…
Patrick Radden Keefe
Paperback
Post-industrial Robotics - Exploring…
Angelo Figliola, Alessandra Battisti
Hardcover
R2,873
Discovery Miles 28 730
Embedded Software Design and Programming…
Katalin Popovici, Frederic Rousseau, …
Hardcover
R4,449
Discovery Miles 44 490
Marijuana Legalization - What Everyone…
Jonathan P Caulkins, Beau Kilmer, …
Hardcover
R1,698
Discovery Miles 16 980
|