![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Differential equations
This unique book on ordinary differential equations addresses practical issues of composing and solving differential equations by demonstrating the detailed solutions of more than 1,000 examples. The initial draft was used to teach more than 10,000 advanced undergraduate students in engineering, physics, economics, as well as applied mathematics. It is a good source for students to learn problem-solving skills and for educators to find problems for homework assignments and tests. The 2nd edition, with at least 100 more examples and five added subsections, has been restructured to flow more pedagogically.
This unique book on ordinary differential equations addresses practical issues of composing and solving differential equations by demonstrating the detailed solutions of more than 1,000 examples. The initial draft was used to teach more than 10,000 advanced undergraduate students in engineering, physics, economics, as well as applied mathematics. It is a good source for students to learn problem-solving skills and for educators to find problems for homework assignments and tests. The 2nd edition, with at least 100 more examples and five added subsections, has been restructured to flow more pedagogically.
Handbook of Sinc Numerical Methods presents an ideal road map for handling general numeric problems. Reflecting the author's advances with Sinc since 1995, the text most notably provides a detailed exposition of the Sinc separation of variables method for numerically solving the full range of partial differential equations (PDEs) of interest to scientists and engineers. This new theory, which combines Sinc convolution with the boundary integral equation (IE) approach, makes for exponentially faster convergence to solutions of differential equations. The basis for the approach is the Sinc method of approximating almost every type of operation stemming from calculus via easily computed matrices of very low dimension. The downloadable resources of this handbook contain roughly 450 MATLAB (R) programs corresponding to exponentially convergent numerical algorithms for solving nearly every computational problem of science and engineering. While the book makes Sinc methods accessible to users wanting to bypass the complete theory, it also offers sufficient theoretical details for readers who do want a full working understanding of this exciting area of numerical analysis.
This is an introductory textbook about nonlinear dynamics of PDEs, with a focus on problems over unbounded domains and modulation equations. The presentation is example-oriented, and new mathematical tools are developed step by step, giving insight into some important classes of nonlinear PDEs and nonlinear dynamics phenomena which may occur in PDEs. The book consists of four parts. Parts I and II are introductions to finite- and infinite-dimensional dynamics defined by ODEs and by PDEs over bounded domains, respectively, including the basics of bifurcation and attractor theory. Part III introduces PDEs on the real line, including the Korteweg-de Vries equation, the Nonlinear Schrodinger equation and the Ginzburg-Landau equation. These examples often occur as simplest possible models, namely as amplitude or modulation equations, for some real world phenomena such as nonlinear waves and pattern formation. Part IV explores in more detail the connections between such complicated physical systems and the reduced models. For many models, a mathematically rigorous justification by approximation results is given. The parts of the book are kept as self-contained as possible. The book is suitable for self-study, and there are various possibilities to build one- or two-semester courses from the book.
This book is the result of 20 years of investigations carried out by the author and his colleagues in order to bring closer and, to a certain extent, synthesize a number of well-known results, ideas and methods from the theory of function approximation, theory of differential and integral equations and numerical analysis. The book opens with an introduction on the theory of function approximation and is followed by a new approach to the Fredholm integral equations to the second kind. Several chapters are devoted to the construction of new methods for the effective approximation of solutions of several important integral, and ordinary and partial differential equations. In addition, new general results on the theory of linear differential equations with one regular singular point, as well as applications of the various new methods are discussed.
The Inverse and Ill-Posed Problems Series is a series of monographs publishing postgraduate level information on inverse and ill-posed problems for an international readership of professional scientists and researchers. The series aims to publish works which involve both theory and applications in, e.g., physics, medicine, geophysics, acoustics, electrodynamics, tomography, and ecology.
In this book, ring-theoretical properties of skew Laurent series rings A((x; )) over a ring A, where A is an associative ring with non-zero identity element are described. In addition, we consider Laurent rings and Malcev-Neumann rings, which are proper extensions of skew Laurent series rings.
Decomposition Methods for Differential Equations: Theory and Applications describes the analysis of numerical methods for evolution equations based on temporal and spatial decomposition methods. It covers real-life problems, the underlying decomposition and discretization, the stability and consistency analysis of the decomposition methods, and numerical results. The book focuses on the modeling of selected multi-physics problems, before introducing decomposition analysis. It presents time and space discretization, temporal decomposition, and the combination of time and spatial decomposition methods for parabolic and hyperbolic equations. The author then applies these methods to numerical problems, including test examples and real-world problems in physical and engineering applications. For the computational results, he uses various software tools, such as MATLAB (R), R3T, WIAS-HiTNIHS, and OPERA-SPLITT. Exploring iterative operator-splitting methods, this book shows how to use higher-order discretization methods to solve differential equations. It discusses decomposition methods and their effectiveness, combination possibility with discretization methods, multi-scaling possibilities, and stability to initial and boundary values problems.
Stabilization of Navier Stokes Flows presents recent notable progress in the mathematical theory of stabilization of Newtonian fluid flows. Finite-dimensional feedback controllers are used to stabilize exponentially the equilibrium solutions of Navier Stokes equations, reducing or eliminating turbulence. Stochastic stabilization and robustness of stabilizable feedback are also discussed. The analysis developed here provides a rigorous pattern for the design of efficient stabilizable feedback controllers to meet the needs of practical problems and the conceptual controllers actually detailed will render the reader 's task of application easier still.Stabilization of Navier Stokes Flows avoids the tedious and technical details often present in mathematical treatments of control and Navier Stokes equations and will appeal to a sizeable audience of researchers and graduate students interested in the mathematics of flow and turbulence control and in Navier-Stokes equations in particular.
This book deals with the efficient numerical solution of challenging nonlinear problems in science and engineering, both in finite and in infinite dimension. Its focus is on local and global Newton methods for direct problems or Gauss-Newton methods for inverse problems. Lots of numerical illustrations, comparison tables, and exercises make the text useful in computational mathematics classes. At the same time, the book opens many directions for possible future research.
Introduction to Functional Equations grew out of a set of class notes from an introductory graduate level course at the University of Louisville. This introductory text communicates an elementary exposition of valued functional equations where the unknown functions take on real or complex values. In order to make the presentation as manageable as possible for students from a variety of disciplines, the book chooses not to focus on functional equations where the unknown functions take on values on algebraic structures such as groups, rings, or fields. However, each chapter includes sections highlighting various developments of the main equations treated in that chapter. For advanced students, the book introduces functional equations in abstract domains like semigroups, groups, and Banach spaces. Functional equations covered include: Cauchy Functional Equations and Applications The Jensen Functional Equation Pexider's Functional Equation Quadratic Functional Equation D'Alembert Functional Equation Trigonometric Functional Equations Pompeiu Functional Equation Hosszu Functional Equation Davison Functional Equation Abel Functional Equation Mean Value Type Functional Equations Functional Equations for Distance Measures The innovation of solving functional equations lies in finding the right tricks for a particular equation. Accessible and rooted in current theory, methods, and research, this book sharpens mathematical competency and prepares students of mathematics and engineering for further work in advanced functional equations.
"Based on the International Conference on Optimal Control of Differential Equations held recently at Ohio University, Athens, this Festschrift to honor the sixty-fifth birthday of Constantin Corduneanu an outstanding researcher in differential and integral equations provides in-depth coverage of recent advances, applications, and open problems relevant to mathematics and physics. Introduces new results as well as novel methods and techniques!"
Based on the Working Conference on Boundary Control and Boundary Variation held in Sophia-Antipolis, France, this work provides important examinations of shape optimization and boundary control of hyperbolic systems, including free boundary problems and stabilization. It offers a new approach to large and nonlinear variation of the boundary using global Eulerian co-ordinates and intrinsic geometry.
Modelling with Ordinary Differential Equations integrates standard material from an elementary course on ordinary differential equations with the skills of mathematical modeling in a number of diverse real-world situations. Each situation highlights a different aspect of the theory or modeling. Carefully selected exercises and projects present excellent opportunities for tutorial sessions and self-study. This text/reference addresses common types of first order ordinary differential equations and the basic theory of linear second order equations with constant coefficients. It also explores the elementary theory of systems of differential equations, Laplace transforms, and numerical solutions. Theorems on the existence and uniqueness of solutions are a central feature. Topics such as curve fitting, time-delay equations, and phase plane diagrams are introduced. The book includes algorithms for computer programs as an integral part of the answer-finding process. Professionals and students in the social and biological sciences, as well as those in physics and mathematics will find this text/reference indispensable for self-study.
Proceedings of the Second International Conference on Trends in Semigroup Theory and Evolution Equations held Sept. 1989, Delft University of Technology, the Netherlands. Papers deal with recent developments in semigroup theory (e.g., positive, dual, integrated), and nonlinear evolution equations (e
Most existing books on evolution equations tend either to cover a particular class of equations in too much depth for beginners or focus on a very specific research direction. Thus, the field can be daunting for newcomers to the field who need access to preliminary material and behind-the-scenes detail. Taking an applications-oriented, conversational approach, Discovering Evolution Equations with Applications: Volume 2-Stochastic Equations provides an introductory understanding of stochastic evolution equations. The text begins with hands-on introductions to the essentials of real and stochastic analysis. It then develops the theory for homogenous one-dimensional stochastic ordinary differential equations (ODEs) and extends the theory to systems of homogenous linear stochastic ODEs. The next several chapters focus on abstract homogenous linear, nonhomogenous linear, and semi-linear stochastic evolution equations. The author also addresses the case in which the forcing term is a functional before explaining Sobolev-type stochastic evolution equations. The last chapter discusses several topics of active research. Each chapter starts with examples of various models. The author points out the similarities of the models, develops the theory involved, and then revisits the examples to reinforce the theoretical ideas in a concrete setting. He incorporates a substantial collection of questions and exercises throughout the text and provides two layers of hints for selected exercises at the end of each chapter. Suitable for readers unfamiliar with analysis even at the undergraduate level, this book offers an engaging and accessible account of core theoretical results of stochastic evolution equations in a way that gradually builds readers' intuition.
Iterative Splitting Methods for Differential Equations explains how to solve evolution equations via novel iterative-based splitting methods that efficiently use computational and memory resources. It focuses on systems of parabolic and hyperbolic equations, including convection-diffusion-reaction equations, heat equations, and wave equations. In the theoretical part of the book, the author discusses the main theorems and results of the stability and consistency analysis for ordinary differential equations. He then presents extensions of the iterative splitting methods to partial differential equations and spatial- and time-dependent differential equations. The practical part of the text applies the methods to benchmark and real-life problems, such as waste disposal, elastics wave propagation, and complex flow phenomena. The book also examines the benefits of equation decomposition. It concludes with a discussion on several useful software packages, including r3t and FIDOS. Covering a wide range of theoretical and practical issues in multiphysics and multiscale problems, this book explores the benefits of using iterative splitting schemes to solve physical problems. It illustrates how iterative operator splitting methods are excellent decomposition methods for obtaining higher-order accuracy.
This book is devoted to the study of elliptic second-order degenerate quasilinear equations, the model of which is the p-Laplacian, with or without dominant lower order reaction term. Emphasis is put on three aspects:
In a coherent, exhaustive and progressive way, this book presents the tools for studying local bifurcations of limit cycles in families of planar vector fields. A systematic introduction is given to such methods as division of an analytic family of functions in its ideal of coefficients, and asymptotic expansion of non-differentiable return maps and desingularisation. The exposition moves from classical analytic geometric methods applied to regular limit periodic sets to more recent tools for singular limit sets. The methods can be applied to theoretical problems such as Hilbert's 16th problem, but also for the purpose of establishing bifurcation diagrams of specific families as well as explicit computations. - - - "The book as a whole is awell-balanced exposition that can be
recommended to all those who want to gain a thorough understanding
and proficiency in therecently developed methods. The book,
reflecting the currentstate of the art, can also be used for
teaching special courses."
This series of books forms a unique and rigorous treatise on various mathematical aspects of fluid mechanics models. These models consist of systems of nonlinear partial differential equations such as the incompressible and compressible NavierStokes equations. The main emphasis in the first volume is on the mathematical analysis of incompressible models. The second volume is an attempt to achieve a mathematical understanding of compressible Navier-Stokes equations. It is probably the first reference covering the issue of global solutions in the large. It includes entirely new material on compactness properties of solutions for the Cauchy problem, the existence and regularity of stationary solutions, and the existence of global weak solutions. Written by one of the world's leading researchers in nonlinear partial differential equations, Mathematical Topics in Fluid Mechanics will be an indispensable reference for every serious researcher in the field. Its topicality and the clear, concise, and deep presentation by the author make it an outstanding contribution to the great theoretical problems in science concerning rigorous mathematical modelling of physical phenomena. Pierre-Louis Lions is Professor of Mathematics at the University Paris-Dauphine and of Applied Mathematics at the Ecole Polytechnique.
The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 35 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high standard, written by scholars with an international reputation presenting current fields of research in pure and applied mathematics.While the editorial board of the Studies has changed with the years, the aspirations of the Studies are unchanged. In times of rapid growth of mathematical knowledge carefully written monographs and textbooks written by experts are needed more than ever, not least to pave the way for the next generation of mathematicians. In this sense the editorial board and the publisher of the Studies are devoted to continue the Studies as a service to the mathematical community. Please submit any book proposals to Niels Jacob. Titles in planning includeFlavia Smarazzo and Alberto Tesei, Measure Theory: Radon Measures, Young Measures, and Applications to Parabolic Problems (2019)Elena Cordero and Luigi Rodino, Time-Frequency Analysis of Operators (2019)Mark M. Meerschaert, Alla Sikorskii, and Mohsen Zayernouri, Stochastic and Computational Models for Fractional Calculus, second edition (2020)Mariusz Lemanczyk, Ergodic Theory: Spectral Theory, Joinings, and Their Applications (2020)Marco Abate, Holomorphic Dynamics on Hyperbolic Complex Manifolds (2021)Miroslava Antic, Joeri Van der Veken, and Luc Vrancken, Differential Geometry of Submanifolds: Submanifolds of Almost Complex Spaces and Almost Product Spaces (2021)Kai Liu, Ilpo Laine, and Lianzhong Yang, Complex Differential-Difference Equations (2021)Rajendra Vasant Gurjar, Kayo Masuda, and Masayoshi Miyanishi, Affine Space Fibrations (2022)
Written by a leading scholar in mathematics, this monograph discusses the Radon transform. This topic has wide ranging applications, in particular X-ray technology, partial differential equations, nuclear magnetic resonance scanning, and tomography.
Problem Solving is essential to solve real-world problems. Advanced Problem Solving with Maple: A First Course applies the mathematical modeling process by formulating, building, solving, analyzing, and criticizing mathematical models. It is intended for a course introducing students to mathematical topics they will revisit within their further studies. The authors present mathematical modeling and problem-solving topics using Maple as the computer algebra system for mathematical explorations, as well as obtaining plots that help readers perform analyses. The book presents cogent applications that demonstrate an effective use of Maple, provide discussions of the results obtained using Maple, and stimulate thought and analysis of additional applications. Highlights: The book's real-world case studies prepare the student for modeling applications Bridges the study of topics and applications to various fields of mathematics, science, and engineering Features a flexible format and tiered approach offers courses for students at various levels The book can be used for students with only algebra or calculus behind them About the authors: Dr. William P. Fox is an emeritus professor in the Department of Defense Analysis at the Naval Postgraduate School. Currently, he is an adjunct professor, Department of Mathematics, the College of William and Mary. He received his Ph.D. at Clemson University and has many publications and scholarly activities including twenty books and over one hundred and fifty journal articles. William C. Bauldry, Prof. Emeritus and Adjunct Research Prof. of Mathematics at Appalachian State University, received his PhD in Approximation Theory from Ohio State. He has published many papers on pedagogy and technology, often using Maple, and has been the PI of several NSF-funded projects incorporating technology and modeling into math courses. He currently serves as Associate Director of COMAP's Math Contest in Modeling (MCM). *Please note that the Maple package, "PSM", is now on the public area of the Maple Cloud. To access it: * From the web: 1. Go to the website https://maple.cloud 2. Click on "packages" in the left navigation pane 3. Click on "PSM" in the list of packages. 4. Click the "Download" button to capture the package. * From Maple: 1. Click on the Maple Cloud icon (far right in the Maple window toolbar). Or click on the Maple Cloud button on Maple's Start page to go to the website. 2. Click on the "packages" in the navigation pane 3. Click on "PSM" in the list of packages. The package then downloads into Maple directly.
Applied Differential Equations with Boundary Value Problems presents a contemporary treatment of ordinary differential equations (ODEs) and an introduction to partial differential equations (PDEs), including their applications in engineering and the sciences. This new edition of the author's popular textbook adds coverage of boundary value problems. The text covers traditional material, along with novel approaches to mathematical modeling that harness the capabilities of numerical algorithms and popular computer software packages. It contains practical techniques for solving the equations as well as corresponding codes for numerical solvers. Many examples and exercises help students master effective solution techniques, including reliable numerical approximations. This book describes differential equations in the context of applications and presents the main techniques needed for modeling and systems analysis. It teaches students how to formulate a mathematical model, solve differential equations analytically and numerically, analyze them qualitatively, and interpret the results.
This book leads readers from a basic foundation to an advanced level understanding of dynamical and complex systems. It is the perfect text for graduate or PhD mathematical-science students looking for support in topics such as applied dynamical systems, Lotka-Volterra dynamical systems, applied dynamical systems theory, dynamical systems in cosmology, aperiodic order, and complex systems dynamics.Dynamical and Complex Systems is the fifth volume of the LTCC Advanced Mathematics Series. This series is the first to provide advanced introductions to mathematical science topics to advanced students of mathematics. Edited by the three joint heads of the London Taught Course Centre for PhD Students in the Mathematical Sciences (LTCC), each book supports readers in broadening their mathematical knowledge outside of their immediate research disciplines while also covering specialized key areas. |
You may like...
Instructional Strategies and Techniques…
Nicole Cooke, Jeffrey Teichmann
Paperback
R1,318
Discovery Miles 13 180
Suffragists in Washington, DC - The 1913…
Rebecca Boggs Roberts
Paperback
How To Identify Trees In South Africa
Braam van Wyk, Piet van Wyk
Paperback
|