![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Differential equations
Modelling with Ordinary Differential Equations: A Comprehensive Approach aims to provide a broad and self-contained introduction to the mathematical tools necessary to investigate and apply ODE models. The book starts by establishing the existence of solutions in various settings and analysing their stability properties. The next step is to illustrate modelling issues arising in the calculus of variation and optimal control theory that are of interest in many applications. This discussion is continued with an introduction to inverse problems governed by ODE models and to differential games. The book is completed with an illustration of stochastic differential equations and the development of neural networks to solve ODE systems. Many numerical methods are presented to solve the classes of problems discussed in this book. Features: Provides insight into rigorous mathematical issues concerning various topics, while discussing many different models of interest in different disciplines (biology, chemistry, economics, medicine, physics, social sciences, etc.) Suitable for undergraduate and graduate students and as an introduction for researchers in engineering and the sciences Accompanied by codes which allow the reader to apply the numerical methods discussed in this book in those cases where analytical solutions are not available
This two-volume book offers a comprehensive treatment of the probabilistic approach to mean field game models and their applications. The book is self-contained in nature and includes original material and applications with explicit examples throughout, including numerical solutions. Volume II tackles the analysis of mean field games in which the players are affected by a common source of noise. The first part of the volume introduces and studies the concepts of weak and strong equilibria, and establishes general solvability results. The second part is devoted to the study of the master equation, a partial differential equation satisfied by the value function of the game over the space of probability measures. Existence of viscosity and classical solutions are proven and used to study asymptotics of games with finitely many players. Together, both Volume I and Volume II will greatly benefit mathematical graduate students and researchers interested in mean field games. The authors provide a detailed road map through the book allowing different access points for different readers and building up the level of technical detail. The accessible approach and overview will allow interested researchers in the applied sciences to obtain a clear overview of the state of the art in mean field games.
This book is designed for a systematic understanding of nuclear diffusion theory along with fuzzy/interval/stochastic uncertainty. This will serve to be a benchmark book for graduate & postgraduate students, teachers, engineers and researchers throughout the globe. In view of the recent developments in nuclear engineering, it is important to study the basic concepts of this field along with the diffusion processes for nuclear reactor design. Also, it is known that uncertainty is a must in every field of engineering and science and, in particular, with regards to nuclear-related problems. As such, one may need to understand the nuclear diffusion principles/theories corresponding with reliable and efficient techniques for the solution of such uncertain problems. Accordingly this book aims to provide a new direction for readers with basic concepts of reactor physics as well as neutron diffusion theory. On the other hand, it also includes uncertainty (in terms of fuzzy, interval, stochastic) and their applications in nuclear diffusion problems in a systematic manner, along with recent developments. The underlying concepts of the presented methods in this book may very well be used/extended to various other engineering disciplines viz. electronics, marine, chemical, mining engineering and other sciences such as physics, chemistry, biotechnology etc. This book then can be widely applied wherever one wants to model their physical problems in terms of non-probabilistic methods viz. fuzzy/stochastic for the true essence of the real problems.
Partial differential equations (PDEs) play an important role in the natural sciences and technology, because they describe the way systems (natural and other) behave. The inherent suitability of PDEs to characterizing the nature, motion, and evolution of systems, has led to their wide-ranging use in numerical models that are developed in order to analyze systems that are not otherwise easily studied. Numerical Solutions for Partial Differential Equations contains all the details necessary for the reader to understand the principles and applications of advanced numerical methods for solving PDEs. In addition, it shows how the modern computer system algebra Mathematica (R) can be used for the analytic investigation of such numerical properties as stability, approximation, and dispersion.
This Monograph contains a collection of problems arising in partial differential equations investigated by means of complex analysis approached in elementary ways.
CR Manifolds and the Tangential Cauchy Riemann Complex provides an elementary introduction to CR manifolds and the tangential Cauchy-Riemann Complex and presents some of the most important recent developments in the field. The first half of the book covers the basic definitions and background material concerning CR manifolds, CR functions, the tangential Cauchy-Riemann Complex and the Levi form. The second half of the book is devoted to two significant areas of current research. The first area is the holomorphic extension of CR functions. Both the analytic disc approach and the Fourier transform approach to this problem are presented. The second area of research is the integral kernal approach to the solvability of the tangential Cauchy-Riemann Complex. CR Manifolds and the Tangential Cauchy Riemann Complex will interest students and researchers in the field of several complex variable and partial differential equations.
For courses in Differential Equations and Linear Algebra. The right balance between concepts, visualisation, applications, and skills Differential Equations and Linear Algebra provides the conceptual development and geometric visualisation of a modern differential equations and linear algebra course that is essential to science and engineering students. It balances traditional manual methods with the new, computer-based methods that illuminate qualitative phenomena - a comprehensive approach that makes accessible a wider range of more realistic applications. The book combines core topics in elementary differential equations with concepts and methods of elementary linear algebra. It starts and ends with discussions of mathematical modeling of real-world phenomena, evident in figures, examples, problems, and applications throughout.
Asymptotic properties of solutions such as stability/ instability,oscillation/ nonoscillation, existence of solutions with specific asymptotics, maximum principles present a classical part in the theory of higher order functional differential equations. The use of these equations in applications is one of the main reasons for the developments in this field. The control in the mechanical processes leads to mathematical models with second order delay differential equations. Stability and stabilization of second order delay equations are one of the main goals of this book. The book is based on the authors' results in the last decade. Features: Stability, oscillatory and asymptotic properties of solutions are studied in correlation with each other. The first systematic description of stability methods based on the Bohl-Perron theorem. Simple and explicit exponential stability tests. In this book, various types of functional differential equations are considered: second and higher orders delay differential equations with measurable coefficients and delays, integro-differential equations, neutral equations, and operator equations. Oscillation/nonoscillation, existence of unbounded solutions, instability, special asymptotic behavior, positivity, exponential stability and stabilization of functional differential equations are studied. New methods for the study of exponential stability are proposed. Noted among them inlcude the W-transform (right regularization), a priory estimation of solutions, maximum principles, differential and integral inequalities, matrix inequality method, and reduction to a system of equations. The book can be used by applied mathematicians and as a basis for a course on stability of functional differential equations for graduate students.
Heinz Langer and his work.- On the spectra of some class of quadratic operator pencils.- Special realizations for Schur upper triangular operators.- On the defect of noncontractive operators in Kre?nin spaces: a new formula and some applications.- Positive differential operators in the Krein space L2(M?n).- Singular values of positive pencils and applications.- Perturbations of Krein spaces preserving the nonsingularity of the critical point infinity.- An analysis of the block structure of jqq-inner functions.- Selfadjoint extensions of the orthogonal sum of symmetric relations, II.- Some interpolation problems of Nevanlinna-Pick type. The Krein-Langer method.- On the spectral representation for singular selfadjoint boundary eigenvalue problems.- Some characteristics of a linear manifold in a Kre?nn space and their applications.- Riggings and relatively form bounded perturbations of nonnegative operators in Krem spaces.- Norm bounds for Volterra integral operators and time-varying linear systems with finite horizon.- The numerical range of selfadjoint matrix polynomials.- Spectral properties of a matrix polynomial connected with a component of its numerical range.- Lyapunov stability of a multiplication operator perturbed by a Volterra operator.- Multiplicative perturbations of positive operators in Krein spaces.- On the number of negative squares of certain functions.- Factorization of elliptic pencils and the Mandelstam hypothesis.- An inductive limit procedure within the quantum harmonic oscillator.- Canonical systems with a semibounded spectrum.
Revised andupdated, this second edition of Walter Gautschi's successful "Numerical Analysis"explorescomputational methodsfor problems arising in the areas of classical analysis, approximation theory, and ordinary differential equations, among others. Topics included in the book are presented with a view toward stressing basic principles and maintaining simplicity and teachability as far as possible, while subjects requiring a higher level of technicality are referenced in detailed bibliographic notes at the end of each chapter. Readers are thus given the guidance and opportunity to pursue advanced modern topics in more depth. Along with updated references, new biographical notes, and enhanced notational clarity, this second editionincludes the expansion of an alreadylarge collection of exercises and assignments, both the kind that deal with theoretical and practical aspects of the subject and those requiring machine computation and the use of mathematical software. Perhaps most notably, the edition also comes with a complete solutions manual, carefully developed and polished by the author, which will serve as an exceptionally valuable resource for instructors."
"Provides a thorough introduction to the algebraic theory of systems of differential equations, as developed by the Japanese school of M. Sato and his colleagues. Features a complete review of hyperfunction-microfunction theory and the theory of D-modules. Strikes the perfect balance between analytic and algebraic aspects."
Extremality results proved in this Monograph for an abstract operator equation provide the theoretical framework for developing new methods that allow the treatment of a variety of discontinuous initial and boundary value problems for both ordinary and partial differential equations, in explicit and implicit forms. By means of these extremality results, the authors prove the existence of extremal solutions between appropriate upper and lower solutions of first and second order discontinuous implicit and explicit ordinary and functional differential equations. They then study the dependence of these extremal solutions on the data. The authors begin by developing an existence theory for an abstract operator equation in ordered spaces and offer new tools for dealing with different kinds of discontinuous implicit and explicit differential equation problems. They present a unified approach to the existence of extremal solutions of quasilinear elliptic and parabolic problems and extend the upper and lower solution method to elliptic and parabolic inclusion of hemivariation type using variational and nonvariational methods. Nonlinear Differential Equations in Ordered Spaces includes research that appears for the first time in book form and is designed as a source book for pure and applied mathematicians. Its self-contained presentation along with numerous worked examples and complete, detailed proofs also make it accessible to researchers in engineering as well as advanced students in these fields.
This book contains the written versions of lectures delivered since
1997 in the well-known weekly seminar on Applied Mathematics at the
College de France in Paris, directed by Jacques-Louis Lions. It is
the 14th and last of the series, due to the recent and untimely
death of Professor Lions. "18.07"
The theory of multivalued maps and the theory of differential inclusions are closely connected and intensively developing branches of contemporary mathematics. They have effective and interesting applications in control theory, optimization, calculus of variations, non-smooth and convex analysis, game theory, mathematical economics and in other fields.This book presents a user-friendly and self-contained introduction to both subjects. It is aimed at 'beginners', starting with students of senior courses. The book will be useful both for readers whose interests lie in the sphere of pure mathematics, as well as for those who are involved in applicable aspects of the theory. In Chapter 0, basic definitions and fundamental results in topology are collected. Chapter 1 begins with examples showing how naturally the idea of a multivalued map arises in diverse areas of mathematics, continues with the description of a variety of properties of multivalued maps and finishes with measurable multivalued functions. Chapter 2 is devoted to the theory of fixed points of multivalued maps. The whole of Chapter 3 focuses on the study of differential inclusions and their applications in control theory. The subject of last Chapter 4 is the applications in dynamical systems, game theory, and mathematical economics.The book is completed with the bibliographic commentaries and additions containing the exposition related both to the sections described in the book and to those which left outside its framework. The extensive bibliography (including more than 400 items) leads from basic works to recent studies.
This book includes selected papers presented at the MIMS (Mediterranean Institute for the Mathematical Sciences) - GGTM (Geometry and Topology Grouping for the Maghreb) conference, held in memory of Mohammed Salah Baouendi, a most renowned figure in the field of several complex variables, who passed away in 2011. All research articles were written by leading experts, some of whom are prize winners in the fields of complex geometry, algebraic geometry and analysis. The book offers a valuable resource for all researchers interested in recent developments in analysis and geometry.
ECMI, the European Consortium for Mathematics in Industry, is the European brand associated with applied mathematics for industry and organizes highly successful biannual conferences. In this series, the ECMI 2010, the 16th European Conference on Mathematics for Industry, was held in the historic city hall of Wuppertal in Germany. It covered the mathematics of a wide range of applications and methods, from circuit and electromagnetic device simulation to model order reduction for chip design, uncertainties and stochastics, production, fluids, life and environmental sciences, and dedicated and versatile methods. These proceedings of ECMI 2010 emphasize mathematics as an innovation enabler for industry and business, and as an absolutely essential pre-requiste for Europe on its way to becoming the leading knowledge-based economy in the world.
Line Integral Methods for Conservative Problems explains the numerical solution of differential equations within the framework of geometric integration, a branch of numerical analysis that devises numerical methods able to reproduce (in the discrete solution) relevant geometric properties of the continuous vector field. The book focuses on a large set of differential systems named conservative problems, particularly Hamiltonian systems. Assuming only basic knowledge of numerical quadrature and Runge-Kutta methods, this self-contained book begins with an introduction to the line integral methods. It describes numerous Hamiltonian problems encountered in a variety of applications and presents theoretical results concerning the main instance of line integral methods: the energy-conserving Runge-Kutta methods, also known as Hamiltonian boundary value methods (HBVMs). The authors go on to address the implementation of HBVMs in order to recover in the numerical solution what was expected from the theory. The book also covers the application of HBVMs to handle the numerical solution of Hamiltonian partial differential equations (PDEs) and explores extensions of the energy-conserving methods. With many examples of applications, this book provides an accessible guide to the subject yet gives you enough details to allow concrete use of the methods. MATLAB codes for implementing the methods are available online.
This book deals with algorithms for the solution of linear systems of algebraic equations with large-scale sparse matrices, with a focus on problems that are obtained after discretization of partial differential equations using finite element methods. The authors provide a systematic presentation of the recent advances in robust algebraic multilevel methods and algorithms, e.g., the preconditioned conjugate gradient method, algebraic multilevel iteration (AMLI) preconditioners, the classical algebraic multigrid (AMG) method and its recent modifications, namely AMG using element interpolation (AMGe) and AMG based on smoothed aggregation. The first six chapters can serve as a short introductory course on the theory of AMLI methods and algorithms. The next part of the monograph is devoted to more advanced topics, including the description of new generation AMG methods, AMLI methods for discontinuous Galerkin systems, looking-free algorithms for coupled problems etc., ending with important practical issues of implementation and challenging applications. This second part is addressed to some more experienced students and practitioners and can be used to complete a more advanced course on robust AMLI and AMG methods and their efficient application. This book is intended for mathematicians, engineers, natural scientists etc.
Combining mathematical theory, physical principles, and engineering problems, Generalized Calculus with Applications to Matter and Forces examines generalized functions, including the Heaviside unit jump and the Dirac unit impulse and its derivatives of all orders, in one and several dimensions. The text introduces the two main approaches to generalized functions: (1) as a nonuniform limit of a family of ordinary functions, and (2) as a functional over a set of test functions from which properties are inherited. The second approach is developed more extensively to encompass multidimensional generalized functions whose arguments are ordinary functions of several variables. As part of a series of books for engineers and scientists exploring advanced mathematics, Generalized Calculus with Applications to Matter and Forces presents generalized functions from an applied point of view, tackling problem classes such as: Gauss and Stokes' theorems in the differential geometry, tensor calculus, and theory of potential fields Self-adjoint and non-self-adjoint problems for linear differential equations and nonlinear problems with large deformations Multipolar expansions and Green's functions for elastic strings and bars, potential and rotational flow, electro- and magnetostatics, and more This third volume in the series Mathematics and Physics for Science and Technology is designed to complete the theory of functions and its application to potential fields, relating generalized functions to broader follow-on topics like differential equations. Featuring step-by-step examples with interpretations of results and discussions of assumptions and their consequences, Generalized Calculus with Applications to Matter and Forces enables readers to construct mathematical-physical models suited to new observations or novel engineering devices.
For computer scientists, especially those in the security field, the use of chaos has been limited to the computation of a small collection of famous but unsuitable maps that offer no explanation of why chaos is relevant in the considered contexts. Discrete Dynamical Systems and Chaotic Machines: Theory and Applications shows how to make finite machines, such as computers, neural networks, and wireless sensor networks, work chaotically as defined in a rigorous mathematical framework. Taking into account that these machines must interact in the real world, the authors share their research results on the behaviors of discrete dynamical systems and their use in computer science. Covering both theoretical and practical aspects, the book presents: Key mathematical and physical ideas in chaos theory Computer science fundamentals, clearly establishing that chaos properties can be satisfied by finite state machines Concrete applications of chaotic machines in computer security, including pseudorandom number generators, hash functions, digital watermarking, and steganography Concrete applications of chaotic machines in wireless sensor networks, including secure data aggregation and video surveillance Until the authors' recent research, the practical implementation of the mathematical theory of chaos on finite machines raised several issues. This self-contained book illustrates how chaos theory enables the study of computer security problems, such as steganalysis, that otherwise could not be tackled. It also explains how the theory reinforces existing cryptographically secure tools and schemes.
Covers ODEs and PDEs-in One TextbookUntil now, a comprehensive textbook covering both ordinary differential equations (ODEs) and partial differential equations (PDEs) didn't exist. Fulfilling this need, Ordinary and Partial Differential Equations provides a complete and accessible course on ODEs and PDEs using many examples and exercises as well as intuitive, easy-to-use software. Teaches the Key Topics in Differential Equations The text includes all the topics that form the core of a modern undergraduate or beginning graduate course in differential equations. It also discusses other optional but important topics such as integral equations, Fourier series, and special functions. Numerous carefully chosen examples offer practical guidance on the concepts and techniques. Guides Students through the Problem-Solving Process Requiring no user programming, the accompanying computer software allows students to fully investigate problems, thus enabling a deeper study into the role of boundary and initial conditions, the dependence of the solution on the parameters, the accuracy of the solution, the speed of a series convergence, and related questions. The ODE module compares students' analytical solutions to the results of computations while the PDE module demonstrates the sequence of all necessary analytical solution steps.
The analysis and topology of elliptic operators on manifolds with singularities are much more complicated than in the smooth case and require completely new mathematical notions and theories. While there has recently been much progress in the field, many of these results have remained scattered in journals and preprints. Starting from an elementary level and finishing with the most recent results, this book gives a systematic exposition of both analytical and topological aspects of elliptic theory on manifolds with singularities. The presentation includes a review of the main techniques of the theory of elliptic equations, offers a comparative analysis of various approaches to differential equations on manifolds with singularities, and devotes considerable attention to applications of the theory. These include Sobolev problems, theorems of Atiyah-Bott-Lefschetz type, and proofs of index formulas for elliptic operators and problems on manifolds with singularities, including the authors' new solution to the index problem for manifolds with nonisolated singularities. A glossary, numerous illustrations, and many examples help readers master the subject. Clear exposition, up-to-date coverage, and accessibility-even at the advanced undergraduate level-lay the groundwork for continuing studies and further advances in the field.
This important new book sets forth a comprehensive description of various mathematical aspects of problems originating in numerical solution of hyperbolic systems of partial differential equations. The authors present the material in the context of the important mechanical applications of such systems, including the Euler equations of gas dynamics, magnetohydrodynamics (MHD), shallow water, and solid dynamics equations. This treatment provides-for the first time in book form-a collection of recipes for applying higher-order non-oscillatory shock-capturing schemes to MHD modelling of physical phenomena. The authors also address a number of original "nonclassical" problems, such as shock wave propagation in rods and composite materials, ionization fronts in plasma, and electromagnetic shock waves in magnets. They show that if a small-scale, higher-order mathematical model results in oscillations of the discontinuity structure, the variety of admissible discontinuities can exhibit disperse behavior, including some with additional boundary conditions that do not follow from the hyperbolic conservation laws. Nonclassical problems are accompanied by a multiple nonuniqueness of solutions. The authors formulate several selection rules, which in some cases easily allow a correct, physically realizable choice. This work systematizes methods for overcoming the difficulties inherent in the solution of hyperbolic systems. Its unique focus on applications, both traditional and new, makes Mathematical Aspects of Numerical Solution of Hyperbolic Systems particularly valuable not only to those interested the development of numerical methods, but to physicists and engineers who strive to solve increasingly complicated nonlinear equations.
Are some areas of fast Fourier transforms still unclear to you? Do the notation and vocabulary seem inconsistent? Does your knowledge of their algorithmic aspects feel incomplete? The fast Fourier transform represents one of the most important advancements in scientific and engineering computing. Until now, however, treatments have been either brief, cryptic, intimidating, or not published in the open literature. Inside the FFT Black Box brings the numerous and varied ideas together in a common notational framework, clarifying vague FFT concepts. Examples and diagrams explain algorithms completely, with consistent notation. This approach connects the algorithms explicitly to the underlying mathematics. Reviews and explanations of FFT ideas taken from engineering, mathematics, and computer science journals teach the computational techniques relevant to FFT. Two appendices familiarize readers with the design and analysis of computer algorithms, as well. This volume employs a unified and systematic approach to FFT. It closes the gap between brief textbook introductions and intimidating treatments in the FFT literature. Inside the FFT Black Box provides an up-to-date, self-contained guide for learning the FFT and the multitude of ideas and computing techniques it employs.
This volume contains the proceedings of the AMS Special Session on Harmonic Analysis and Partial Differential Equations, held from April 21-22, 2018, at Northeastern University, Boston, Massachusetts. The book features a series of recent developments at the interface between harmonic analysis and partial differential equations and is aimed toward the theoretical and applied communities of researchers working in real, complex, and harmonic analysis, partial differential equations, and their applications. The topics covered belong to the general areas of the theory of function spaces, partial differential equations of elliptic, parabolic, and dissipative types, geometric optics, free boundary problems, and ergodic theory, and the emphasis is on a host of new concepts, methods, and results. |
You may like...
Differential Equations with Linear…
Matthew R. Boelkins, Jack L. Goldberg, …
Hardcover
R2,869
Discovery Miles 28 690
Dissipative Lattice Dynamical Systems
Xiaoying Han, Peter Kloeden
Hardcover
R3,304
Discovery Miles 33 040
Boundary Elements and other Mesh…
A. H.-D. Cheng, S. Syngellakis
Hardcover
R3,109
Discovery Miles 31 090
Qualitative Theory Of Odes: An…
Henryk Zoladek, Raul Murillo
Hardcover
R2,378
Discovery Miles 23 780
|