0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (4)
  • R250 - R500 (79)
  • R500+ (4,086)
  • -
Status
Format
Author / Contributor
Publisher

Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Differential equations

Inverse Boundary Spectral Problems (Paperback): Alexander Kachalov, Yaroslav Kurylev, Matti Lassas Inverse Boundary Spectral Problems (Paperback)
Alexander Kachalov, Yaroslav Kurylev, Matti Lassas
R2,042 Discovery Miles 20 420 Ships in 10 - 15 working days

Inverse boundary problems are a rapidly developing area of applied mathematics with applications throughout physics and the engineering sciences. However, the mathematical theory of inverse problems remains incomplete and needs further development to aid in the solution of many important practical problems. Inverse Boundary Spectral Problems develop a rigorous theory for solving several types of inverse problems exactly. In it, the authors consider the following: "Can the unknown coefficients of an elliptic partial differential equation be determined from the eigenvalues and the boundary values of the eigenfunctions?" Along with this problem, many inverse problems for heat and wave equations are solved. The authors approach inverse problems in a coordinate invariant way, that is, by applying ideas drawn from differential geometry. To solve them, they apply methods of Riemannian geometry, modern control theory, and the theory of localized wave packets, also known as Gaussian beams. The treatment includes the relevant background of each of these areas. Although the theory of inverse boundary spectral problems has been in development for at least 10 years, until now the literature has been scattered throughout various journals. This self-contained monograph summarizes the relevant concepts and the techniques useful for dealing with them.

Discrete Dynamical Systems and Chaotic Machines - Theory and Applications (Paperback): Jacques Bahi, Christophe Guyeux Discrete Dynamical Systems and Chaotic Machines - Theory and Applications (Paperback)
Jacques Bahi, Christophe Guyeux
R2,031 Discovery Miles 20 310 Ships in 10 - 15 working days

For computer scientists, especially those in the security field, the use of chaos has been limited to the computation of a small collection of famous but unsuitable maps that offer no explanation of why chaos is relevant in the considered contexts. Discrete Dynamical Systems and Chaotic Machines: Theory and Applications shows how to make finite machines, such as computers, neural networks, and wireless sensor networks, work chaotically as defined in a rigorous mathematical framework. Taking into account that these machines must interact in the real world, the authors share their research results on the behaviors of discrete dynamical systems and their use in computer science. Covering both theoretical and practical aspects, the book presents: Key mathematical and physical ideas in chaos theory Computer science fundamentals, clearly establishing that chaos properties can be satisfied by finite state machines Concrete applications of chaotic machines in computer security, including pseudorandom number generators, hash functions, digital watermarking, and steganography Concrete applications of chaotic machines in wireless sensor networks, including secure data aggregation and video surveillance Until the authors' recent research, the practical implementation of the mathematical theory of chaos on finite machines raised several issues. This self-contained book illustrates how chaos theory enables the study of computer security problems, such as steganalysis, that otherwise could not be tackled. It also explains how the theory reinforces existing cryptographically secure tools and schemes.

Elliptic Theory on Singular Manifolds (Paperback): Vladimir E. Nazaikinskii, Anton Yu Savin, Bert-Wolfgang Schulze, Boris Yu... Elliptic Theory on Singular Manifolds (Paperback)
Vladimir E. Nazaikinskii, Anton Yu Savin, Bert-Wolfgang Schulze, Boris Yu Sternin
R2,050 Discovery Miles 20 500 Ships in 10 - 15 working days

The analysis and topology of elliptic operators on manifolds with singularities are much more complicated than in the smooth case and require completely new mathematical notions and theories. While there has recently been much progress in the field, many of these results have remained scattered in journals and preprints. Starting from an elementary level and finishing with the most recent results, this book gives a systematic exposition of both analytical and topological aspects of elliptic theory on manifolds with singularities. The presentation includes a review of the main techniques of the theory of elliptic equations, offers a comparative analysis of various approaches to differential equations on manifolds with singularities, and devotes considerable attention to applications of the theory. These include Sobolev problems, theorems of Atiyah-Bott-Lefschetz type, and proofs of index formulas for elliptic operators and problems on manifolds with singularities, including the authors' new solution to the index problem for manifolds with nonisolated singularities. A glossary, numerous illustrations, and many examples help readers master the subject. Clear exposition, up-to-date coverage, and accessibility-even at the advanced undergraduate level-lay the groundwork for continuing studies and further advances in the field.

Mathematical Aspects of Numerical Solution of Hyperbolic Systems (Paperback): A.G. Kulikovskii, N. V. Pogorelov, A.Yu. Semenov Mathematical Aspects of Numerical Solution of Hyperbolic Systems (Paperback)
A.G. Kulikovskii, N. V. Pogorelov, A.Yu. Semenov
R2,075 Discovery Miles 20 750 Ships in 10 - 15 working days

This important new book sets forth a comprehensive description of various mathematical aspects of problems originating in numerical solution of hyperbolic systems of partial differential equations. The authors present the material in the context of the important mechanical applications of such systems, including the Euler equations of gas dynamics, magnetohydrodynamics (MHD), shallow water, and solid dynamics equations. This treatment provides-for the first time in book form-a collection of recipes for applying higher-order non-oscillatory shock-capturing schemes to MHD modelling of physical phenomena. The authors also address a number of original "nonclassical" problems, such as shock wave propagation in rods and composite materials, ionization fronts in plasma, and electromagnetic shock waves in magnets. They show that if a small-scale, higher-order mathematical model results in oscillations of the discontinuity structure, the variety of admissible discontinuities can exhibit disperse behavior, including some with additional boundary conditions that do not follow from the hyperbolic conservation laws. Nonclassical problems are accompanied by a multiple nonuniqueness of solutions. The authors formulate several selection rules, which in some cases easily allow a correct, physically realizable choice. This work systematizes methods for overcoming the difficulties inherent in the solution of hyperbolic systems. Its unique focus on applications, both traditional and new, makes Mathematical Aspects of Numerical Solution of Hyperbolic Systems particularly valuable not only to those interested the development of numerical methods, but to physicists and engineers who strive to solve increasingly complicated nonlinear equations.

Inside the FFT Black Box - Serial and Parallel Fast Fourier Transform Algorithms (Paperback): Eleanor Chu, Alan George Inside the FFT Black Box - Serial and Parallel Fast Fourier Transform Algorithms (Paperback)
Eleanor Chu, Alan George
R2,046 Discovery Miles 20 460 Ships in 10 - 15 working days

Are some areas of fast Fourier transforms still unclear to you? Do the notation and vocabulary seem inconsistent? Does your knowledge of their algorithmic aspects feel incomplete? The fast Fourier transform represents one of the most important advancements in scientific and engineering computing. Until now, however, treatments have been either brief, cryptic, intimidating, or not published in the open literature. Inside the FFT Black Box brings the numerous and varied ideas together in a common notational framework, clarifying vague FFT concepts. Examples and diagrams explain algorithms completely, with consistent notation. This approach connects the algorithms explicitly to the underlying mathematics. Reviews and explanations of FFT ideas taken from engineering, mathematics, and computer science journals teach the computational techniques relevant to FFT. Two appendices familiarize readers with the design and analysis of computer algorithms, as well. This volume employs a unified and systematic approach to FFT. It closes the gap between brief textbook introductions and intimidating treatments in the FFT literature. Inside the FFT Black Box provides an up-to-date, self-contained guide for learning the FFT and the multitude of ideas and computing techniques it employs.

Stable Solutions of Elliptic Partial Differential Equations (Paperback): Louis Dupaigne Stable Solutions of Elliptic Partial Differential Equations (Paperback)
Louis Dupaigne
R2,045 Discovery Miles 20 450 Ships in 10 - 15 working days

Stable solutions are ubiquitous in differential equations. They represent meaningful solutions from a physical point of view and appear in many applications, including mathematical physics (combustion, phase transition theory) and geometry (minimal surfaces). Stable Solutions of Elliptic Partial Differential Equations offers a self-contained presentation of the notion of stability in elliptic partial differential equations (PDEs). The central questions of regularity and classification of stable solutions are treated at length. Specialists will find a summary of the most recent developments of the theory, such as nonlocal and higher-order equations. For beginners, the book walks you through the fine versions of the maximum principle, the standard regularity theory for linear elliptic equations, and the fundamental functional inequalities commonly used in this field. The text also includes two additional topics: the inverse-square potential and some background material on submanifolds of Euclidean space.

Modeling and Inverse Problems in the Presence of Uncertainty (Paperback): H.T. Banks, Shuhua Hu, W. Clayton Thompson Modeling and Inverse Problems in the Presence of Uncertainty (Paperback)
H.T. Banks, Shuhua Hu, W. Clayton Thompson
R2,054 Discovery Miles 20 540 Ships in 10 - 15 working days

Modeling and Inverse Problems in the Presence of Uncertainty collects recent research-including the authors' own substantial projects-on uncertainty propagation and quantification. It covers two sources of uncertainty: where uncertainty is present primarily due to measurement errors and where uncertainty is present due to the modeling formulation itself. After a useful review of relevant probability and statistical concepts, the book summarizes mathematical and statistical aspects of inverse problem methodology, including ordinary, weighted, and generalized least-squares formulations. It then discusses asymptotic theories, bootstrapping, and issues related to the evaluation of correctness of assumed form of statistical models. The authors go on to present methods for evaluating and comparing the validity of appropriateness of a collection of models for describing a given data set, including statistically based model selection and comparison techniques. They also explore recent results on the estimation of probability distributions when they are embedded in complex mathematical models and only aggregate (not individual) data are available. In addition, they briefly discuss the optimal design of experiments in support of inverse problems for given models. The book concludes with a focus on uncertainty in model formulation itself, covering the general relationship of differential equations driven by white noise and the ones driven by colored noise in terms of their resulting probability density functions. It also deals with questions related to the appropriateness of discrete versus continuum models in transitions from small to large numbers of individuals. With many examples throughout addressing problems in physics, biology, and other areas, this book is intended for applied mathematicians interested in deterministic and/or stochastic models and their interactions. It is also s

Line Integral Methods for Conservative Problems (Paperback): Luigi Brugnano, Felice  Iavernaro Line Integral Methods for Conservative Problems (Paperback)
Luigi Brugnano, Felice Iavernaro
R2,032 Discovery Miles 20 320 Ships in 10 - 15 working days

Line Integral Methods for Conservative Problems explains the numerical solution of differential equations within the framework of geometric integration, a branch of numerical analysis that devises numerical methods able to reproduce (in the discrete solution) relevant geometric properties of the continuous vector field. The book focuses on a large set of differential systems named conservative problems, particularly Hamiltonian systems. Assuming only basic knowledge of numerical quadrature and Runge-Kutta methods, this self-contained book begins with an introduction to the line integral methods. It describes numerous Hamiltonian problems encountered in a variety of applications and presents theoretical results concerning the main instance of line integral methods: the energy-conserving Runge-Kutta methods, also known as Hamiltonian boundary value methods (HBVMs). The authors go on to address the implementation of HBVMs in order to recover in the numerical solution what was expected from the theory. The book also covers the application of HBVMs to handle the numerical solution of Hamiltonian partial differential equations (PDEs) and explores extensions of the energy-conserving methods. With many examples of applications, this book provides an accessible guide to the subject yet gives you enough details to allow concrete use of the methods. MATLAB codes for implementing the methods are available online.

Mimetic Discretization Methods (Paperback): Jose E. Castillo, Guillermo F. Miranda Mimetic Discretization Methods (Paperback)
Jose E. Castillo, Guillermo F. Miranda
R2,035 Discovery Miles 20 350 Ships in 10 - 15 working days

To help solve physical and engineering problems, mimetic or compatible algebraic discretization methods employ discrete constructs to mimic the continuous identities and theorems found in vector calculus. Mimetic Discretization Methods focuses on the recent mimetic discretization method co-developed by the first author. Based on the Castillo-Grone operators, this simple mimetic discretization method is invariably valid for spatial dimensions no greater than three. The book also presents a numerical method for obtaining corresponding discrete operators that mimic the continuum differential and flux-integral operators, enabling the same order of accuracy in the interior as well as the domain boundary. After an overview of various mimetic approaches and applications, the text discusses the use of continuum mathematical models as a way to motivate the natural use of mimetic methods. The authors also offer basic numerical analysis material, making the book suitable for a course on numerical methods for solving PDEs. The authors cover mimetic differential operators in one, two, and three dimensions and provide a thorough introduction to object-oriented programming and C++. In addition, they describe how their mimetic methods toolkit (MTK)-available online-can be used for the computational implementation of mimetic discretization methods. The text concludes with the application of mimetic methods to structured nonuniform meshes as well as several case studies. Compiling the authors' many concepts and results developed over the years, this book shows how to obtain a robust numerical solution of PDEs using the mimetic discretization approach. It also helps readers compare alternative methods in the literature.

Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics (Paperback):... Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics (Paperback)
Victor A. Galaktionov, Sergey R. Svirshchevskii
R2,071 Discovery Miles 20 710 Ships in 10 - 15 working days

Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics is the first book to provide a systematic construction of exact solutions via linear invariant subspaces for nonlinear differential operators. Acting as a guide to nonlinear evolution equations and models from physics and mechanics, the book focuses on the existence of new exact solutions on linear invariant subspaces for nonlinear operators and their crucial new properties. This practical reference deals with various partial differential equations (PDEs) and models that exhibit some common nonlinear invariant features. It begins with classical as well as more recent examples of solutions on invariant subspaces. In the remainder of the book, the authors develop several techniques for constructing exact solutions of various nonlinear PDEs, including reaction-diffusion and gas dynamics models, thin-film and Kuramoto-Sivashinsky equations, nonlinear dispersion (compacton) equations, KdV-type and Harry Dym models, quasilinear magma equations, and Green-Naghdi equations. Using exact solutions, they describe the evolution properties of blow-up or extinction phenomena, finite interface propagation, and the oscillatory, changing sign behavior of weak solutions near interfaces for nonlinear PDEs of various types and orders. The techniques surveyed in Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics serve as a preliminary introduction to the general theory of nonlinear evolution PDEs of different orders and types.

Unilateral Contact Problems - Variational Methods and Existence Theorems (Paperback): Christof Eck, Jiri Jarusek, Miroslav Krbec Unilateral Contact Problems - Variational Methods and Existence Theorems (Paperback)
Christof Eck, Jiri Jarusek, Miroslav Krbec
R2,056 Discovery Miles 20 560 Ships in 10 - 15 working days

The mathematical analysis of contact problems, with or without friction, is an area where progress depends heavily on the integration of pure and applied mathematics. This book presents the state of the art in the mathematical analysis of unilateral contact problems with friction, along with a major part of the analysis of dynamic contact problems without friction. Much of this monograph emerged from the authors' research activities over the past 10 years and deals with an approach proven fruitful in many situations. Starting from thin estimates of possible solutions, this approach is based on an approximation of the problem and the proof of a moderate partial regularity of the solution to the approximate problem. This in turn makes use of the shift (or translation) technique - an important yet often overlooked tool for contact problems and other nonlinear problems with limited regularity. The authors pay careful attention to quantification and precise results to get optimal bounds in sufficient conditions for existence theorems. Unilateral Contact Problems: Variational Methods and Existence Theorems a valuable resource for scientists involved in the analysis of contact problems and for engineers working on the numerical approximation of contact problems. Self-contained and thoroughly up to date, it presents a complete collection of the available results and techniques for the analysis of unilateral contact problems and builds the background required for further research on more complex problems in this area.

Wavelets and Other Orthogonal Systems (Paperback, 2nd edition): Gilbert G. Walter, Xiaoping Shen Wavelets and Other Orthogonal Systems (Paperback, 2nd edition)
Gilbert G. Walter, Xiaoping Shen
R2,109 Discovery Miles 21 090 Ships in 10 - 15 working days

A bestseller in its first edition, Wavelets and Other Orthogonal Systems: Second Edition has been fully updated to reflect the recent growth and development of this field, especially in the area of multiwavelets. The authors have incorporated more examples and numerous illustrations to help clarify concepts. They have also added a considerable amount of new material, including sections addressing impulse trains, an alternate approach to periodic wavelets, and positive wavelet s. Other new discussions include irregular sampling in wavelet subspaces, hybrid wavelet sampling, interpolating multiwavelets, and several new statistics topics. With cutting-edge applications in data compression, image analysis, numerical analysis, and acoustics wavelets remain at the forefront of current research. Wavelets and Other Orthogonal Systems maintains its mathematical perspective in presenting wavelets in the same setting as other orthogonal systems, thus allowing their advantages and disadvantages to be seen more directly. Now even more student friendly, the second edition forms an outstanding text not only for graduate students in mathematics, but also for those interested in scientific and engineering applications.

Solution of Ordinary Differential Equations by Continuous Groups (Paperback): George Emanuel Solution of Ordinary Differential Equations by Continuous Groups (Paperback)
George Emanuel
R2,030 Discovery Miles 20 300 Ships in 10 - 15 working days

Written by an engineer and sharply focused on practical matters, this text explores the application of Lie groups to solving ordinary differential equations (ODEs). Although the mathematical proofs and derivations in are de-emphasized in favor of problem solving, the author retains the conceptual basis of continuous groups and relates the theory to problems in engineering and the sciences. The author has developed a number of new techniques that are published here for the first time, including the important and useful enlargement procedure. The author also introduces a new way of organizing tables reminiscent of that used for integral tables. These new methods and the unique organizational scheme allow a significant increase in the number of ODEs amenable to group-theory solution. Solution of Ordinary Differential Equations by Continuous Groups offers a self-contained treatment that presumes only a rudimentary exposure to ordinary differential equations. Replete with fully worked examples, it is the ideal self-study vehicle for upper division and graduate students and professionals in applied mathematics, engineering, and the sciences.

Operational Calculus and Related Topics (Paperback): A.P. Prudnikov, K. A Skornik Operational Calculus and Related Topics (Paperback)
A.P. Prudnikov, K. A Skornik
R2,056 Discovery Miles 20 560 Ships in 10 - 15 working days

Even though the theories of operational calculus and integral transforms are centuries old, these topics are constantly developing, due to their use in the fields of mathematics, physics, and electrical and radio engineering. Operational Calculus and Related Topics highlights the classical methods and applications as well as the recent advances in the field. Combining the best features of a textbook and a monograph, this volume presents an introduction to operational calculus, integral transforms, and generalized functions, the backbones of pure and applied mathematics. The text examines both the analytical and algebraic aspects of operational calculus and includes a comprehensive survey of classical results while stressing new developments in the field. Among the historical methods considered are Oliver Heaviside's algebraic operational calculus and Paul Dirac's delta function. Other discussions deal with the conditions for the existence of integral transforms, Jan Mikusinski's theory of convolution quotients, operator functions, and the sequential approach to the theory of generalized functions. Benefits... * Discusses theory and applications of integral transforms * Gives inversion, complex-inversion, and Dirac's delta distribution formulas, among others * Offers a short survey of actual results of finite integral transforms, in particular convolution theorems Because Operational Calculus and Related Topics provides examples and illustrates the applications to various disciplines, it is an ideal reference for mathematicians, physicists, scientists, engineers, and students.

Exactly Solvable Models of Biological Invasion (Paperback): Sergei V. Petrovskii, Bai-Lian Li Exactly Solvable Models of Biological Invasion (Paperback)
Sergei V. Petrovskii, Bai-Lian Li
R2,031 Discovery Miles 20 310 Ships in 10 - 15 working days

Much of our current knowledge on biological invasion was derived from field studies, but many recent advances relied heavily on mathematics and computing, particularly mathematical modeling. While numerical simulations are clearly a useful approach, they have some serious drawbacks. Approximations errors and the number of parameter values can have a significant impact on the simulation results, the extent of which often remains obscure. Such difficulties do not arise, however, when the problem can be solved analytically. Exactly Solvable Models of Biological Invasion demonstrates the advantages and methods of obtaining exact solutions of partial differential equations that describe nonlinear problems encountered in the study of invasive species spread. With emphasis on PDEs of diffusion-reaction type, the authors present a comprehensive collection of exactly solvable models and a unified, self-contained description of the relevant mathematical methods. In doing so, they also provide new insight into important issues such as the impact of the Allee effect, the impact of predation, and the interplay between different modes of species dispersal. Full calculation details make this presentation accessible to biologists as well as applied mathematicians, and a range of ecological examples and applications demonstrate the utility of exact methods in practice. Exact solutions provide an immediate, complete description of system dynamics for a wide class of initial conditions and serve as a convenient tool for testing numerical algorithms and codes used in more specialized studies. This book lays the groundwork for bringing the power of exactly solvable models to bear on real-world ecological problems.

Theory of Fuzzy Differential Equations and Inclusions (Paperback): V. Lakshmikantham, Ram. N. Mohapatra Theory of Fuzzy Differential Equations and Inclusions (Paperback)
V. Lakshmikantham, Ram. N. Mohapatra
R2,025 Discovery Miles 20 250 Ships in 10 - 15 working days

Fuzzy differential functions are applicable to real-world problems in engineering, computer science, and social science. That relevance makes for rapid development of new ideas and theories. This volume is a timely introduction to the subject that describes the current state of the theory of fuzzy differential equations and inclusions and provides a systematic account of recent developments. The chapters are presented in a clear and logical way and include the preliminary material for fuzzy set theory; a description of calculus for fuzzy functions, an investigation of the basic theory of fuzzy differential equations, and an introduction to fuzzy differential inclusions.

Monotone Flows and Rapid Convergence for Nonlinear Partial Differential Equations (Paperback): V. Lakshmikantham, S. Koksal Monotone Flows and Rapid Convergence for Nonlinear Partial Differential Equations (Paperback)
V. Lakshmikantham, S. Koksal
R2,044 Discovery Miles 20 440 Ships in 10 - 15 working days

A monotone iterative technique is used to obtain monotone approximate solutions that converge to the solution of nonlinear problems of partial differential equations of elliptic, parabolic and hyperbolic type. This volume describes that technique, which has played a valuable role in unifying a variety of nonlinear problems, particularly when combined with the quasilinearization method. The first part of this monograph describes the general methodology using the classic approach, while the second part develops the same basic ideas via the variational technique. The text provides a useful and timely reference for applied scientists, engineers and numerical analysts.

Stability of Infinite Dimensional Stochastic Differential Equations with Applications (Paperback): Kai Liu Stability of Infinite Dimensional Stochastic Differential Equations with Applications (Paperback)
Kai Liu
R2,041 Discovery Miles 20 410 Ships in 10 - 15 working days

Stochastic differential equations in infinite dimensional spaces are motivated by the theory and analysis of stochastic processes and by applications such as stochastic control, population biology, and turbulence, where the analysis and control of such systems involves investigating their stability. While the theory of such equations is well established, the study of their stability properties has grown rapidly only in the past 20 years, and most results have remained scattered in journals and conference proceedings. This book offers a systematic presentation of the modern theory of the stability of stochastic differential equations in infinite dimensional spaces - particularly Hilbert spaces. The treatment includes a review of basic concepts and investigation of the stability theory of linear and nonlinear stochastic differential equations and stochastic functional differential equations in infinite dimensions. The final chapter explores topics and applications such as stochastic optimal control and feedback stabilization, stochastic reaction-diffusion, Navier-Stokes equations, and stochastic population dynamics. In recent years, this area of study has become the focus of increasing attention, and the relevant literature has expanded greatly. Stability of Infinite Dimensional Stochastic Differential Equations with Applications makes up-to-date material in this important field accessible even to newcomers and lays the foundation for future advances.

Differential Equations with Maxima (Paperback): umi D. Bainov, Snezhana G. Hristova Differential Equations with Maxima (Paperback)
umi D. Bainov, Snezhana G. Hristova
R2,042 Discovery Miles 20 420 Ships in 10 - 15 working days

Differential equations with "maxima"-differential equations that contain the maximum of the unknown function over a previous interval-adequately model real-world processes whose present state significantly depends on the maximum value of the state on a past time interval. More and more, these equations model and regulate the behavior of various technical systems on which our ever-advancing, high-tech world depends. Understanding and manipulating the theoretical results and investigations of differential equations with maxima opens the door to enormous possibilities for applications to real-world processes and phenomena. Presenting the qualitative theory and approximate methods, Differential Equations with Maxima begins with an introduction to the mathematical apparatus of integral inequalities involving maxima of unknown functions. The authors solve various types of linear and nonlinear integral inequalities, study both cases of single and double integral inequalities, and illustrate several direct applications of solved inequalities. They also present general properties of solutions as well as existence results for initial value and boundary value problems. Later chapters offer stability results with definitions of different types of stability with sufficient conditions and include investigations based on appropriate modifications of the Razumikhin technique by applying Lyapunov functions. The text covers the main concepts of oscillation theory and methods applied to initial and boundary value problems, combining the method of lower and upper solutions with appropriate monotone methods and introducing algorithms for constructing sequences of successive approximations. The book concludes with a systematic development of the averaging method for differential equations with maxima as applied to first-order and neutral equations. It also explores different schemes for averaging, partial averaging, partially additiv

Approximate Analytical Methods for Solving Ordinary Differential Equations (Paperback): T. S. L. Radhika, T. Iyengar, Trani Approximate Analytical Methods for Solving Ordinary Differential Equations (Paperback)
T. S. L. Radhika, T. Iyengar, Trani
R2,027 Discovery Miles 20 270 Ships in 10 - 15 working days

Approximate Analytical Methods for Solving Ordinary Differential Equations (ODEs) is the first book to present all of the available approximate methods for solving ODEs, eliminating the need to wade through multiple books and articles. It covers both well-established techniques and recently developed procedures, including the classical series solution method, diverse perturbation methods, pioneering asymptotic methods, and the latest homotopy methods. The book is suitable not only for mathematicians and engineers but also for biologists, physicists, and economists. It gives a complete description of the methods without going deep into rigorous mathematical aspects. Detailed examples illustrate the application of the methods to solve real-world problems. The authors introduce the classical power series method for solving differential equations before moving on to asymptotic methods. They next show how perturbation methods are used to understand physical phenomena whose mathematical formulation involves a perturbation parameter and explain how the multiple-scale technique solves problems whose solution cannot be completely described on a single timescale. They then describe the Wentzel, Kramers, and Brillown (WKB) method that helps solve both problems that oscillate rapidly and problems that have a sudden change in the behavior of the solution function at a point in the interval. The book concludes with recent nonperturbation methods that provide solutions to a much wider class of problems and recent analytical methods based on the concept of homotopy of topology.

Weakly Connected Nonlinear Systems - Boundedness and Stability of Motion (Paperback): Anatoly Martynyuk, Larisa Chernetskaya,... Weakly Connected Nonlinear Systems - Boundedness and Stability of Motion (Paperback)
Anatoly Martynyuk, Larisa Chernetskaya, Vladislav Martynyuk
R2,030 Discovery Miles 20 300 Ships in 10 - 15 working days

Weakly Connected Nonlinear Systems: Boundedness and Stability of Motion provides a systematic study on the boundedness and stability of weakly connected nonlinear systems, covering theory and applications previously unavailable in book form. It contains many essential results needed for carrying out research on nonlinear systems of weakly connected equations. After supplying the necessary mathematical foundation, the book illustrates recent approaches to studying the boundedness of motion of weakly connected nonlinear systems. The authors consider conditions for asymptotic and uniform stability using the auxiliary vector Lyapunov functions and explore the polystability of the motion of a nonlinear system with a small parameter. Using the generalization of the direct Lyapunov method with the asymptotic method of nonlinear mechanics, they then study the stability of solutions for nonlinear systems with small perturbing forces. They also present fundamental results on the boundedness and stability of systems in Banach spaces with weakly connected subsystems through the generalization of the direct Lyapunov method, using both vector and matrix-valued auxiliary functions. Designed for researchers and graduate students working on systems with a small parameter, this book will help readers get up to date on the knowledge required to start research in this area.

The Divergence Theorem and Sets of Finite Perimeter (Paperback): Washek F. Pfeffer The Divergence Theorem and Sets of Finite Perimeter (Paperback)
Washek F. Pfeffer
R2,035 Discovery Miles 20 350 Ships in 10 - 15 working days

This book is devoted to a detailed development of the divergence theorem. The framework is that of Lebesgue integration - no generalized Riemann integrals of Henstock-Kurzweil variety are involved. In Part I the divergence theorem is established by a combinatorial argument involving dyadic cubes. Only elementary properties of the Lebesgue integral and Hausdorff measures are used. The resulting integration by parts is sufficiently general for many applications. As an example, it is applied to removable singularities of Cauchy-Riemann, Laplace, and minimal surface equations. The sets of finite perimeter are introduced in Part II. Both the geometric and analytic points of view are presented. The equivalence of these viewpoints is obtained via the functions of bounded variation. These functions are studied in a self-contained manner with no references to Sobolev's spaces. The coarea theorem provides a link between the sets of finite perimeter and functions of bounded variation. The general divergence theorem for bounded vector fields is proved in Part III. The proof consists of adapting the combinatorial argument of Part I to sets of finite perimeter. The unbounded vector fields and mean divergence are also discussed. The final chapter contains a characterization of the distributions that are equal to the flux of a continuous vector field.

Higher Order Derivatives (Paperback): Satya Mukhopadhyay Higher Order Derivatives (Paperback)
Satya Mukhopadhyay
R2,029 Discovery Miles 20 290 Ships in 10 - 15 working days

The concept of higher order derivatives is useful in many branches of mathematics and its applications. As they are useful in many places, nth order derivatives are often defined directly. Higher Order Derivatives discusses these derivatives, their uses, and the relations among them. It covers higher order generalized derivatives, including the Peano, d.l.V.P., and Abel derivatives; along with the symmetric and unsymmetric Riemann, Cesaro, Borel, LP-, and Laplace derivatives. Although much work has been done on the Peano and de la Vallee Poussin derivatives, there is a large amount of work to be done on the other higher order derivatives as their properties remain often virtually unexplored. This book introduces newcomers interested in the field of higher order derivatives to the present state of knowledge. Basic advanced real analysis is the only required background, and, although the special Denjoy integral has been used, knowledge of the Lebesgue integral should suffice.

Uncertain Dynamical Systems - Stability and Motion Control (Paperback): A.A. Martynyuk, Yu. A. Martynyuk-Chernienko Uncertain Dynamical Systems - Stability and Motion Control (Paperback)
A.A. Martynyuk, Yu. A. Martynyuk-Chernienko
R2,042 Discovery Miles 20 420 Ships in 10 - 15 working days

This self-contained book provides systematic instructive analysis of uncertain systems of the following types: ordinary differential equations, impulsive equations, equations on time scales, singularly perturbed differential equations, and set differential equations. Each chapter contains new conditions of stability of unperturbed motion of the above-mentioned type of equations, along with some applications. Without assuming specific knowledge of uncertain dynamical systems, the book includes many fundamental facts about dynamical behaviour of its solutions. Giving a concise review of current research developments, Uncertain Dynamical Systems: Stability and Motion Control Details all proofs of stability conditions for five classes of uncertain systems Clearly defines all used notions of stability and control theory Contains an extensive bibliography, facilitating quick access to specific subject areas in each chapter Requiring only a fundamental knowledge of general theory of differential equations and calculus, this book serves as an excellent text for pure and applied mathematicians, applied physicists, industrial engineers, operations researchers, and upper-level undergraduate and graduate students studying ordinary differential equations, impulse equations, dynamic equations on time scales, and set differential equations.

Difference Methods for Singular Perturbation Problems (Paperback): Grigory I. Shishkin, Lidia P. Shishkina Difference Methods for Singular Perturbation Problems (Paperback)
Grigory I. Shishkin, Lidia P. Shishkina
R2,054 Discovery Miles 20 540 Ships in 10 - 15 working days

Difference Methods for Singular Perturbation Problems focuses on the development of robust difference schemes for wide classes of boundary value problems. It justifies the -uniform convergence of these schemes and surveys the latest approaches important for further progress in numerical methods. The first part of the book explores boundary value problems for elliptic and parabolic reaction-diffusion and convection-diffusion equations in n-dimensional domains with smooth and piecewise-smooth boundaries. The authors develop a technique for constructing and justifying uniformly convergent difference schemes for boundary value problems with fewer restrictions on the problem data. Containing information published mainly in the last four years, the second section focuses on problems with boundary layers and additional singularities generated by nonsmooth data, unboundedness of the domain, and the perturbation vector parameter. This part also studies both the solution and its derivatives with errors that are independent of the perturbation parameters. Co-authored by the creator of the Shishkin mesh, this book presents a systematic, detailed development of approaches to construct uniformly convergent finite difference schemes for broad classes of singularly perturbed boundary value problems.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Boundary Elements and other Mesh…
A. H.-D. Cheng, S. Syngellakis Hardcover R3,109 Discovery Miles 31 090
Differential Equations with Boundary…
Dennis Zill Paperback R1,311 R1,221 Discovery Miles 12 210
Schaum's Outline of Differential…
Richard Bronson, Gabriel B Costa Paperback R476 Discovery Miles 4 760
Advances in Numerical Analysis: Volume…
Will Light Hardcover R4,117 Discovery Miles 41 170
Industrial Aspects of Finite Element…
Connie McGuire Hardcover R2,090 Discovery Miles 20 900
A Differential Equation from a Parallel…
Julio Cesar Martinez Romero Hardcover R809 Discovery Miles 8 090
Handbook of Differential Equations
Daniel Zwillinger Hardcover R2,570 Discovery Miles 25 700
Calculus and Ordinary Differential…
David Pearson Paperback R799 Discovery Miles 7 990
An Invitation to Applied Mathematics…
Carmen Chicone Hardcover R2,527 Discovery Miles 25 270
Partial Differential Equations
Osamu Sano Paperback R1,535 Discovery Miles 15 350

 

Partners