![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Differential equations
This book provides a general overview of several concepts of synchronization and brings together related approaches to secure communication in chaotic systems. This is achieved using a combination of analytic, algebraic, geometrical and asymptotical methods to tackle the dynamical feedback stabilization problem. In particular, differential-geometric and algebraic differential concepts reveal important structural properties of chaotic systems and serve as guide for the construction of design procedures for a wide variety of chaotic systems. The basic differential algebraic and geometric concepts are presented in the first few chapters in a novel way as design tools, together with selected experimental studies demonstrating their importance. The subsequent chapters treat recent applications. Written for graduate students in applied physical sciences, systems engineers, and applied mathematicians interested in synchronization of chaotic systems and in secure communications, this self-contained text requires only basic knowledge of integer ordinary and fractional ordinary differential equations. Design applications are illustrated with the help of several physical models of practical interest.
This book shows how Lie group and integrability techniques, originally developed for differential equations, have been adapted to the case of difference equations. Difference equations are playing an increasingly important role in the natural sciences. Indeed, many phenomena are inherently discrete and thus naturally described by difference equations. More fundamentally, in subatomic physics, space-time may actually be discrete. Differential equations would then just be approximations of more basic discrete ones. Moreover, when using differential equations to analyze continuous processes, it is often necessary to resort to numerical methods. This always involves a discretization of the differential equations involved, thus replacing them by difference ones. Each of the nine peer-reviewed chapters in this volume serves as a self-contained treatment of a topic, containing introductory material as well as the latest research results and exercises. Each chapter is presented by one or more early career researchers in the specific field of their expertise and, in turn, written for early career researchers. As a survey of the current state of the art, this book will serve as a valuable reference and is particularly well suited as an introduction to the field of symmetries and integrability of difference equations. Therefore, the book will be welcomed by advanced undergraduate and graduate students as well as by more advanced researchers.
Analytical Solution Methods for Boundary Value Problems is an extensively revised, new English language edition of the original 2011 Russian language work, which provides deep analysis methods and exact solutions for mathematical physicists seeking to model germane linear and nonlinear boundary problems. Current analytical solutions of equations within mathematical physics fail completely to meet boundary conditions of the second and third kind, and are wholly obtained by the defunct theory of series. These solutions are also obtained for linear partial differential equations of the second order. They do not apply to solutions of partial differential equations of the first order and they are incapable of solving nonlinear boundary value problems. Analytical Solution Methods for Boundary Value Problems attempts to resolve this issue, using quasi-linearization methods, operational calculus and spatial variable splitting to identify the exact and approximate analytical solutions of three-dimensional non-linear partial differential equations of the first and second order. The work does so uniquely using all analytical formulas for solving equations of mathematical physics without using the theory of series. Within this work, pertinent solutions of linear and nonlinear boundary problems are stated. On the basis of quasi-linearization, operational calculation and splitting on spatial variables, the exact and approached analytical solutions of the equations are obtained in private derivatives of the first and second order. Conditions of unequivocal resolvability of a nonlinear boundary problem are found and the estimation of speed of convergence of iterative process is given. On an example of trial functions results of comparison of the analytical solution are given which have been obtained on suggested mathematical technology, with the exact solution of boundary problems and with the numerical solutions on well-known methods.
Nonstandard Analysis enhances mathematical reasoning by introducing new ways of expression and deduction. Distinguishing between standard and nonstandard mathematical objects, its inventor, the eminent mathematician Abraham Robinson, settled in 1961 the centuries-old problem of how to use infinitesimals correctly in analysis. Having also worked as an engineer, he saw not only that his method greatly simplified mathematically proving and teaching, but also served as a powerful tool in modelling, analyzing and solving problems in the applied sciences, among others by effective rescaling and by infinitesimal discretizations. This book reflects the progress made in the forty years since the appearance of Robinson s revolutionary book Nonstandard Analysis: in the foundations of mathematics and logic, number theory, statistics and probability, in ordinary, partial and stochastic differential equations and in education. The contributions are clear and essentially self-contained."
Yes, this is another Calculus book. However, it fits in a niche between the two predominant types of such texts. It could be used as a textbook, albeit a streamlined one - it contains exposition on each topic, with an introduction, rationale, train of thought, and solved examples with accompanying suggested exercises. It could be used as a solution guide - because it contains full written solutions to each of the hundreds of exercises posed inside. But its best position is right in between these two extremes. It is best used as a companion to a traditional text or as a refresher - with its conversational tone, its 'get right to it' content structure, and its inclusion of complete solutions to many problems, it is a friendly partner for students who are learning Calculus, either in class or via self-study.Exercises are structured in three sets to force multiple encounters with each topic. Solved examples in the text are accompanied by 'You Try It' problems, which are similar to the solved examples; the students use these to see if they're ready to move forward. Then at the end of the section, there are 'Practice Problems': more problems similar to the 'You Try It' problems, but given all at once. Finally, each section has Challenge Problems - these lean to being equally or a bit more difficult than the others, and they allow students to check on what they've mastered.The goal is to keep the students engaged with the text, and so the writing style is very informal, with attempts at humor along the way. The target audience is STEM students including those in engineering and meteorology programs.
Yes, this is another Calculus book. However, it fits in a niche between the two predominant types of such texts. It could be used as a textbook, albeit a streamlined one - it contains exposition on each topic, with an introduction, rationale, train of thought, and solved examples with accompanying suggested exercises. It could be used as a solution guide - because it contains full written solutions to each of the hundreds of exercises posed inside. But its best position is right in between these two extremes. It is best used as a companion to a traditional text or as a refresher - with its conversational tone, its 'get right to it' content structure, and its inclusion of complete solutions to many problems, it is a friendly partner for students who are learning Calculus, either in class or via self-study.Exercises are structured in three sets to force multiple encounters with each topic. Solved examples in the text are accompanied by 'You Try It' problems, which are similar to the solved examples; the students use these to see if they're ready to move forward. Then at the end of the section, there are 'Practice Problems': more problems similar to the 'You Try It' problems, but given all at once. Finally, each section has Challenge Problems - these lean to being equally or a bit more difficult than the others, and they allow students to check on what they've mastered.The goal is to keep the students engaged with the text, and so the writing style is very informal, with attempts at humor along the way. The target audience is STEM students including those in engineering and meteorology programs.
Yes, this is another Calculus book. However, it fits in a niche between the two predominant types of such texts. It could be used as a textbook, albeit a streamlined one - it contains exposition on each topic, with an introduction, rationale, train of thought, and solved examples with accompanying suggested exercises. It could be used as a solution guide - because it contains full written solutions to each of the hundreds of exercises posed inside. But its best position is right in between these two extremes. It is best used as a companion to a traditional text or as a refresher - with its conversational tone, its 'get right to it' content structure, and its inclusion of complete solutions to many problems, it is a friendly partner for students who are learning Calculus, either in class or via self-study.Exercises are structured in three sets to force multiple encounters with each topic. Solved examples in the text are accompanied by 'You Try It' problems, which are similar to the solved examples; the students use these to see if they're ready to move forward. Then at the end of the section, there are 'Practice Problems': more problems similar to the 'You Try It' problems, but given all at once. Finally, each section has Challenge Problems - these lean to being equally or a bit more difficult than the others, and they allow students to check on what they've mastered.The goal is to keep the students engaged with the text, and so the writing style is very informal, with attempts at humor along the way. The target audience is STEM students including those in engineering and meteorology programs.
Yes, this is another Calculus book. However, it fits in a niche between the two predominant types of such texts. It could be used as a textbook, albeit a streamlined one - it contains exposition on each topic, with an introduction, rationale, train of thought, and solved examples with accompanying suggested exercises. It could be used as a solution guide - because it contains full written solutions to each of the hundreds of exercises posed inside. But its best position is right in between these two extremes. It is best used as a companion to a traditional text or as a refresher - with its conversational tone, its 'get right to it' content structure, and its inclusion of complete solutions to many problems, it is a friendly partner for students who are learning Calculus, either in class or via self-study.Exercises are structured in three sets to force multiple encounters with each topic. Solved examples in the text are accompanied by 'You Try It' problems, which are similar to the solved examples; the students use these to see if they're ready to move forward. Then at the end of the section, there are 'Practice Problems': more problems similar to the 'You Try It' problems, but given all at once. Finally, each section has Challenge Problems - these lean to being equally or a bit more difficult than the others, and they allow students to check on what they've mastered.The goal is to keep the students engaged with the text, and so the writing style is very informal, with attempts at humor along the way. The target audience is STEM students including those in engineering and meteorology programs.
Within this carefully presented monograph, the authors extend the universal phenomenon of synchronization from finite-dimensional dynamical systems of ordinary differential equations (ODEs) to infinite-dimensional dynamical systems of partial differential equations (PDEs). By combining synchronization with controllability, they introduce the study of synchronization to the field of control and add new perspectives to the investigation of synchronization for systems of PDEs. With a focus on synchronization for a coupled system of wave equations, the text is divided into three parts corresponding to Dirichlet, Neumann, and coupled Robin boundary controls. Each part is then subdivided into chapters detailing exact boundary synchronization and approximate boundary synchronization, respectively. The core intention is to give artificial intervention to the evolution of state variables through appropriate boundary controls for realizing the synchronization in a finite time, creating a novel viewpoint into the investigation of synchronization for systems of partial differential equations, and revealing some essentially dissimilar characteristics from systems of ordinary differential equations. Primarily aimed at researchers and graduate students of applied mathematics and applied sciences, this text will particularly appeal to those interested in applied PDEs and control theory for distributed parameter systems.
Boundary Value Problems and Singular Pseudo-differential Operators
covers the analysis of pseudo-differential operators on manifolds
with conical points and edges. The standard singular integral
operators on the half-axis as well as boundary value problems on
smooth manifolds are treated as particular cone and wedge theories.
Particular features of the book are:
This book provides a thorough conversation on the underpinnings of Covid-19 spread modelling by using stochastics nonlocal differential and integral operators with singular and non-singular kernels. The book presents the dynamic of Covid-19 spread behaviour worldwide. It is noticed that the spread dynamic followed process with nonlocal behaviours which resemble power law, fading memory, crossover and stochastic behaviours. Fractional stochastic differential equations are therefore used to model spread behaviours in different parts of the worlds. The content coverage includes brief history of Covid-19 spread worldwide from December 2019 to September 2021, followed by statistical analysis of collected data for infected, death and recovery classes.
These two volumes present the collected works of James Serrin. He did seminal work on a number of the basic tools needed for the study of solutions of partial differential equations. Many of them have been and are being applied to solving problems in science and engineering. Among the areas which he studied are maximum principle methods and related phenomena such as Harnack's inequality, the compact support principle, dead cores and bursts, free boundary problems, phase transitions, the symmetry of solutions, boundary layer theory, singularities and fine regularity properties. The volumes include commentaries by leading mathematicians to indicate the significance of the articles and to discuss further developments along the lines of these articles.
While statistical mechanics describe the equilibrium state of systems with many degrees of freedom, and dynamical systems explain the irregular evolution of systems with few degrees of freedom, new tools are needed to study the evolution of systems with many degrees of freedom. This book presents the basic aspects of chaotic systems, with emphasis on systems composed by huge numbers of particles. Firstly, the basic concepts of chaotic dynamics are introduced, moving on to explore the role of ergodicity and chaos for the validity of statistical laws, and ending with problems characterized by the presence of more than one significant scale. Also discussed is the relevance of many degrees of freedom, coarse graining procedure, and instability mechanisms in justifying a statistical description of macroscopic bodies. Introducing the tools to characterize the non asymptotic behaviors of chaotic systems, this text will interest researchers and graduate students in statistical mechanics and chaos.
Homogenization is a fairly new, yet deep field of mathematics which is used as a powerful tool for analysis of applied problems which involve multiple scales. Generally, homogenization is utilized as a modeling procedure to describe processes in complex structures. Applications of Homogenization Theory to the Study of Mineralized Tissue functions as an introduction to the theory of homogenization. At the same time, the book explains how to apply the theory to various application problems in biology, physics and engineering. The authors are experts in the field and collaborated to create this book which is a useful research monograph for applied mathematicians, engineers and geophysicists. As for students and instructors, this book is a well-rounded and comprehensive text on the topic of homogenization for graduate level courses or special mathematics classes. Features: Covers applications in both geophysics and biology. Includes recent results not found in classical books on the topic Focuses on evolutionary kinds of problems; there is little overlap with books dealing with variational methods and T-convergence Includes new results where the G-limits have different structures from the initial operators
Covers simultaneously rigorous mathematics, general physical principles and engineering applications with practical interest Provides interpretation of results with the help of illustrations Includes detailed proofs of all results
Covers simultaneously rigorous mathematics, general physical principles and engineering applications with practical interest Provides interpretation of results with the help of illustrations Includes detailed proofs of all results
This book deals with the study of sequence spaces, matrix transformations, measures of noncompactness and their various applications. The notion of measure of noncompactness is one of the most useful ones available and has many applications. The book discusses some of the existence results for various types of differential and integral equations with the help of measures of noncompactness; in particular, the Hausdorff measure of noncompactness has been applied to obtain necessary and sufficient conditions for matrix operators between BK spaces to be compact operators. The book consists of eight self-contained chapters. Chapter 1 discusses the theory of FK spaces and Chapter 2 various duals of sequence spaces, which are used to characterize the matrix classes between these sequence spaces (FK and BK spaces) in Chapters 3 and 4. Chapter 5 studies the notion of a measure of noncompactness and its properties. The techniques associated with measures of noncompactness are applied to characterize the compact matrix operators in Chapters 6. In Chapters 7 and 8, some of the existence results are discussed for various types of differential and integral equations, which are obtained with the help of argumentations based on compactness conditions.
This book aims at providing an overview of state-of-the-art in both the theory and methods of intuitionistic fuzzy logic, partial differential equations and numerical methods in informatics. It covers topics such as fuzzy intuitionistic Hilbert spaces, intuitionistic fuzzy differential equations, fuzzy intuitionistic metric spaces, and numerical methods for differential equations. It reports on applications such as fuzzy real time scheduling, intelligent control, diagnostics and time series prediction. Chapters were carefully selected among contributions presented at the second edition of the International Conference on Intuitionistic Fuzzy Sets and Mathematical Science, ICIFSMAS, held on April 11-13, 2018, at Al Akhawayn University of Ifrane, in Morocco.
Skillfully organized introductory text examines origin of differential equations, then defines basic terms and outlines general solution of a differential equation. Subsequent sections deal with integrating factors; dilution and accretion problems; linearization of first order systems; Laplace Transforms; Newton's Interpolation Formulas, more.
These two volumes present the collected works of James Serrin. He did seminal work on a number of the basic tools needed for the study of solutions of partial differential equations. Many of them have been and are being applied to solving problems in science and engineering. Among the areas which he studied are maximum principle methods and related phenomena such as Harnack's inequality, the compact support principle, dead cores and bursts, free boundary problems, phase transitions, the symmetry of solutions, boundary layer theory, singularities and fine regularity properties. The volumes include commentaries by leading mathematicians to indicate the significance of the articles and to discuss further developments along the lines of these articles.
Elliptic operators arise naturally in several different mathematical settings, notably in the representation theory of Lie groups, the study of evolution equations, and the examination of Riemannian manifolds. This book develops the basic theory of elliptic operators on Lie groups and thereby extends the conventional theory of parabolic evolution equations to a natural non-commutative context. In order to achieve this goal, the author presents a synthesis of ideas from partial differential equations, harmonic analysis, functional analysis, and the theory of Lie groups. He begins by discussing the abstract theory of general operators with complex coefficients before concentrating on the central case of second-order operators with real coefficients. A full discussion of second-order subellilptic operators is also given. Prerequisites are a familiarity with basic semigroup theory, the elementary theory of Lie groups, and a firm grounding in functional analysis as might be gained from the first year of a graduate course.
Complexity theory has become an increasingly important theme in mathematical research. This book deals with an approximate solution of differential or integral equations by algorithms using incomplete information. This situation often arises for equations of the form Lu = f where f is some function defined on a domain and L is a differential operator. We do not have complete information about f. For instance, we might only know its value at a finite number of points in the domain, or the values of its inner products with a finite set of known functions. Consequently the best that can be hoped for is to solve the equation to within a given accuracy at minimal cost or complexity. In this book, the theory of the complexity of the solution to differential and integral equations is developed. The relationship between the worst case setting and other (sometimes more tractable) related settings, such as the average case, probabilistic, asymptotic, and randomized settings, is also discussed. The author determines the inherent complexity of the problem and finds optimal algorithms (in the sense of having minimal cost). Furthermore, he studies to what extent standard algorithms (such as finite element methods for elliptic problems) are optimal. This approach is discussed in depth in the context of two-point boundary value problems, linear elliptic partial differential equations, integral equations, ordinary differential equations, and ill-posed problems. As a result, this volume should appeal to mathematicians and numerical analysts working on the approximate solution of differential and integral equations, as well as to complexity theorists addressing related questions in this area.
On March 17-19 and May 19-21,1995, analysis seminars were organized jointly at the universities of Copenhagen and Lund, under the heading "Danish-Swedish Analysis Seminar". The main topic was partial differen- tial equations and related problems of mathematical physics. The lectures given are presented in this volume, some as short abstracts and some as quite complete expositions or survey papers. They span over a large vari- ety of topics. The most frequently occurring theme is the use of microlocal analysis which is now important also in the study of non-linear differential equations although it originated entirely within the linear theory. Perhaps it is less surprising that microlocal analysis has proved to be useful in the study of mathematical problems of classical quantum mechanics, for it re- ceived a substantial input of ideas from that field. The scientific committee for the invitation of speakers consisted of Gerd Grubb in Copenhagen, Lars Hormander and Anders MeHn in Lund, and Jo- hannes Sjostrand in Paris. Lars Hormander and Anders Melin have edited the proceedings. They were hosts of the seminar days in Lund while Gerd Grubb was the host in Copenhagen. Financial support was obtained from the mathematics departments in Copenhagen and Lund, CNRS in France, the Danish and Swedish Na- tional Research Councils, Gustaf Sigurd Magnuson's foundation at the Royal Swedish Academy of Sciences, and the Wenner-Gren foundation in Stockholm. We want to thank all these organisations for their support.
This book simultaneously presents the theory and the numerical treatment of elliptic boundary value problems, since an understanding of the theory is necessary for the numerical analysis of the discretisation. It first discusses the Laplace equation and its finite difference discretisation before addressing the general linear differential equation of second order. The variational formulation together with the necessary background from functional analysis provides the basis for the Galerkin and finite-element methods, which are explored in detail. A more advanced chapter leads the reader to the theory of regularity. Individual chapters are devoted to singularly perturbed as well as to elliptic eigenvalue problems. The book also presents the Stokes problem and its discretisation as an example of a saddle-point problem taking into account its relevance to applications in fluid dynamics. |
You may like...
System Level Design Model with Reuse of…
Patrizia Cavalloro, Christophe Gendarme, …
Hardcover
R2,770
Discovery Miles 27 700
Microbiorobotics - Biologically Inspired…
Minjun Kim, Agung Julius, …
Hardcover
R3,214
Discovery Miles 32 140
Digital Fashion Innovations - Advances…
Abu Sadat Muhammad Sayem
Paperback
R2,392
Discovery Miles 23 920
Pearson REVISE BTEC National Engineering…
Andrew Buckenham, Kevin Medcalf, …
Paperback
(1)R529 Discovery Miles 5 290
Dynamics in Logistics - Proceedings of…
Michael Freitag, Herbert Kotzab, …
Hardcover
Advanced Manufacturing Techniques for…
T. Rajasekaran, N Rajan, …
Hardcover
R6,648
Discovery Miles 66 480
Cognitive Systems
Henrik Christensen, Geert-Jan M Kruijff, …
Hardcover
R5,246
Discovery Miles 52 460
|