![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Differential equations
The book contains a systematic treatment of the qualitative theory of elliptic boundary value problems for linear and quasilinear second order equations in non-smooth domains. The authors concentrate on the following fundamental results: sharp estimates for strong and weak solutions, solvability of the boundary value problems, regularity assertions for solutions near singular points.
This book gives many helps for students of technical colleges who have had usual mathematical training. The material presented in this book exceeds the content of the spoken lessons, and so, it is also useful for other engineering specialities and even for students in mathematics. The authors present in a small number of pages the basic notions and results of differential calculus concerning to: sequences and series of numbers, sequences and series of functions, power series, elements of topology in n-dimensional space, limits of functions, continuous functions, partial derivatives of functions of several variables, Taylor's formula, extrema of a function of several variables (free or with constrains), change of variables, dependent functions.
In this popular text for an Numerical Analysis course, the authors introduce several major methods of solving various partial differential equations (PDEs) including elliptic, parabolic, and hyperbolic equations. It covers traditional techniques including the classic finite difference method, finite element method, and state-of-the-art numercial methods.The text uniquely emphasizes both theoretical numerical analysis and practical implementation of the algorithms in MATLAB. This new edition includes a new chapter, Finite Value Method, the presentation has been tightened, new exercises and applications are included, and the text refers now to the latest release of MATLAB. Key Selling Points: A successful textbook for an undergraduate text on numerical analysis or methods taught in mathematics and computer engineering. This course is taught in every university throughout the world with an engineering department or school. Competitive advantage broader numerical methods (including finite difference, finite element, meshless method, and finite volume method), provides the MATLAB source code for most popular PDEs with detailed explanation about the implementation and theoretical analysis. No other existing textbook in the market offers a good combination of theoretical depth and practical source codes.
This book emphasizes those topological methods (of dynamical systems) and theories that are useful in the study of different classes of nonautonomous evolutionary equations. The content is developed over six chapters, providing a thorough introduction to the techniques used in the Chapters III-VI described by Chapter I-II. The author gives a systematic treatment of the basic mathematical theory and constructive methods for Nonautonomous Dynamics. They show how these diverse topics are connected to other important parts of mathematics, including Topology, Functional Analysis and Qualitative Theory of Differential/Difference Equations. Throughout the book a nice balance is maintained between rigorous mathematics and applications (ordinary differential/difference equations, functional differential equations and partial difference equations). The primary readership includes graduate and PhD students and researchers in in the field of dynamical systems and their applications (control theory, economic dynamics, mathematical theory of climate, population dynamics, oscillation theory etc).
This volume provides an introduction to modern space-time discretization methods such as finite and boundary elements and isogeometric analysis for time-dependent initial-boundary value problems of parabolic and hyperbolic type. Particular focus is given on stable formulations, error estimates, adaptivity in space and time, efficient solution algorithms, parallelization of the solution pipeline, and applications in science and engineering.
This book collects the latest results and new trends in the application of mathematics to some problems in control theory, numerical simulation and differential equations. The work comprises the main results presented at a thematic minisymposium, part of the 9th International Congress on Industrial and Applied Mathematics (ICIAM 2019), held in Valencia, Spain, from 15 to 18 July 2019. The topics covered in the 6 peer-review contributions involve applications of numerical methods to real problems in oceanography and naval engineering, as well as relevant results on switching control techniques, which can have multiple applications in industrial complexes, electromechanical machines, biological systems, etc. Problems in control theory, as in most engineering problems, are modeled by differential equations, for which standard solving procedures may be insufficient. The book also includes recent geometric and analytical methods for the search of exact solutions for differential equations, which serve as essential tools for analyzing problems in many scientific disciplines.
This introductory and self-contained book gathers as much explicit mathematical results on the linear-elastic and heat-conduction solutions in the neighborhood of singular points in two-dimensional domains, and singular edges and vertices in three-dimensional domains. These are presented in an engineering terminology for practical usage. The author treats the mathematical formulations from an engineering viewpoint and presents high-order finite-element methods for the computation of singular solutions in isotropic and anisotropic materials, and multi-material interfaces. The proper interpretation of the results in engineering practice is advocated, so that the computed data can be correlated to experimental observations. The book is divided into fourteen chapters, each containing several sections. Most of it (the first nine Chapters) addresses two-dimensional domains, where only singular points exist. The solution in a vicinity of these points admits an asymptotic expansion composed of eigenpairs and associated generalized flux/stress intensity factors (GFIFs/GSIFs), which are being computed analytically when possible or by finite element methods otherwise. Singular points associated with weakly coupled thermoelasticity in the vicinity of singularities are also addressed and thermal GSIFs are computed. The computed data is important in engineering practice for predicting failure initiation in brittle material on a daily basis. Several failure laws for two-dimensional domains with V-notches are presented and their validity is examined by comparison to experimental observations. A sufficient simple and reliable condition for predicting failure initiation (crack formation) in micron level electronic devices, involving singular points, is still a topic of active research and interest, and is addressed herein. Explicit singular solutions in the vicinity of vertices and edges in three-dimensional domains are provided in the remaining five chapters. New methods for the computation of generalized edge flux/stress intensity functions along singular edges are presented and demonstrated by several example problems from the field of fracture mechanics; including anisotropic domains and bimaterial interfaces. Circular edges are also presented and the author concludes with some remarks on open questions. This well illustrated book will appeal to both applied mathematicians and engineers working in the field of fracture mechanics and singularities.
This book considers dynamic boundary value problems in domains with singularities of two types. The first type consists of "edges" of various dimensions on the boundary; in particular, polygons, cones, lenses, polyhedra are domains of this type. Singularities of the second type are "singularly perturbed edges" such as smoothed corners and edges and small holes. A domain with singularities of such type depends on a small parameter, whereas the boundary of the limit domain (as the parameter tends to zero) has usual edges, i.e. singularities of the first type. In the transition from the limit domain to the perturbed one, the boundary near a conical point or an edge becomes smooth, isolated singular points become small cavities, and so on. In an "irregular" domain with such singularities, problems of elastodynamics, electrodynamics and some other dynamic problems are discussed. The purpose is to describe the asymptotics of solutions near singularities of the boundary. The presented results and methods have a wide range of applications in mathematical physics and engineering. The book is addressed to specialists in mathematical physics, partial differential equations, and asymptotic methods.
This textbook offers readers a self-contained introduction to quantitative Tamarkin category theory. Functioning as a viable alternative to the standard algebraic analysis method, the categorical approach explored in this book makes microlocal sheaf theory accessible to a wide audience of readers interested in symplectic geometry. Much of this material has, until now, been scattered throughout the existing literature; this text finally collects that information into one convenient volume. After providing an overview of symplectic geometry, ranging from its background to modern developments, the author reviews the preliminaries with precision. This refresher ensures readers are prepared for the thorough exploration of the Tamarkin category that follows. A variety of applications appear throughout, such as sheaf quantization, sheaf interleaving distance, and sheaf barcodes from projectors. An appendix offers additional perspectives by highlighting further useful topics. Quantitative Tamarkin Theory is ideal for graduate students interested in symplectic geometry who seek an accessible alternative to the algebraic analysis method. A background in algebra and differential geometry is recommended. This book is part of the "Virtual Series on Symplectic Geometry" http://www.springer.com/series/16019
A large number of physical phenomena are modeled by nonlinear partial differential equations, subject to appropriate initial/ boundary conditions; these equations, in general, do not admit exact solution. The present monograph gives constructive mathematical techniques which bring out large time behavior of solutions of these model equations. These approaches, in conjunction with modern computational methods, help solve physical problems in a satisfactory manner. The asymptotic methods dealt with here include self-similarity, balancing argument, and matched asymptotic expansions. The physical models discussed in some detail here relate to porous media equation, heat equation with absorption, generalized Fisher's equation, Burgers equation and its generalizations. A chapter each is devoted to nonlinear diffusion and fluid mechanics. The present book will be found useful by applied mathematicians, physicists, engineers and biologists, and would considerably help understand diverse natural phenomena.
This book addresses the global study of finite and infinite singularities of planar polynomial differential systems, with special emphasis on quadratic systems. While results covering the degenerate cases of singularities of quadratic systems have been published elsewhere, the proofs for the remaining harder cases were lengthier. This book covers all cases, with half of the content focusing on the last non-degenerate ones. The book contains the complete bifurcation diagram, in the 12-parameter space, of global geometrical configurations of singularities of quadratic systems. The authors' results provide - for the first time - global information on all singularities of quadratic systems in invariant form and their bifurcations. In addition, a link to a very helpful software package is included. With the help of this software, the study of the algebraic bifurcations becomes much more efficient and less time-consuming. Given its scope, the book will appeal to specialists on polynomial differential systems, pure and applied mathematicians who need to study bifurcation diagrams of families of such systems, Ph.D. students, and postdoctoral fellows.
This book concentrates on one- and multi-dimensional nonlinear integral and discrete Gronwall-Bellman type inequalities. It complements the author's book on linear inequalities and serves as an essential tool for researchers interested in differential (ODE and PDE), difference, and integral equations. The present volume is part 2 of the author's two-volume work on inequalities. Integral and discrete inequalities are a very important tool in classical analysis and play a crucial role in establishing the well-posedness of the related equations, i.e., differential, difference and integral equations.
Stemming from the IHP trimester "Stochastic Dynamics Out of Equilibrium", this collection of contributions focuses on aspects of nonequilibrium dynamics and its ongoing developments. It is common practice in statistical mechanics to use models of large interacting assemblies governed by stochastic dynamics. In this context "equilibrium" is understood as stochastically (time) reversible dynamics with respect to a prescribed Gibbs measure. Nonequilibrium dynamics correspond on the other hand to irreversible evolutions, where fluxes appear in physical systems, and steady-state measures are unknown. The trimester, held at the Institut Henri Poincare (IHP) in Paris from April to July 2017, comprised various events relating to three domains (i) transport in non-equilibrium statistical mechanics; (ii) the design of more efficient simulation methods; (iii) life sciences. It brought together physicists, mathematicians from many domains, computer scientists, as well as researchers working at the interface between biology, physics and mathematics. The present volume is indispensable reading for researchers and Ph.D. students working in such areas.
A survey of asymptotic methods in fluid mechanics and applications is given including high Reynolds number flows (interacting boundary layers, marginal separation, turbulence asymptotics) and low Reynolds number flows as an example of hybrid methods, waves as an example of exponential asymptotics and multiple scales methods in meteorology.
This treatise gives an exposition of the functional analytical approach to quasilinear parabolic evolution equations, developed to a large extent by the author during the last 10 years. This approach is based on the theory of linear nonautonomous parabolic evolution equations and on interpolation-extrapolation techniques. It is the only general method that applies to noncoercive quasilinear parabolic systems under nonlinear boundary conditions. The present first volume is devoted to a detailed study of nonautonomous linear parabolic evolution equations in general Banach spaces. It contains a careful exposition of the constant domain case, leading to some improvements of the classical Sobolevskii-Tanabe results. It also includes recent results for equations possessing constant interpolation spaces. In addition, systematic presentations of the theory of maximal regularity in spaces of continuous and HAlder continuous functions, and in Lebesgue spaces, are given. It includes related recent theorems in the field of harmonic analysis in Banach spaces and on operators possessing bounded imaginary powers. Lastly, there is a complete presentation of the technique of interpolation-extrapolation spaces and of evolution equations in those spaces, containing many new results.
Topics covered in this volume (large deviations, differential geometry, asymptotic expansions, central limit theorems) give a full picture of the current advances in the application of asymptotic methods in mathematical finance, and thereby provide rigorous solutions to important mathematical and financial issues, such as implied volatility asymptotics, local volatility extrapolation, systemic risk and volatility estimation. This volume gathers together ground-breaking results in this field by some of its leading experts. Over the past decade, asymptotic methods have played an increasingly important role in the study of the behaviour of (financial) models. These methods provide a useful alternative to numerical methods in settings where the latter may lose accuracy (in extremes such as small and large strikes, and small maturities), and lead to a clearer understanding of the behaviour of models, and of the influence of parameters on this behaviour. Graduate students, researchers and practitioners will find this book very useful, and the diversity of topics will appeal to people from mathematical finance, probability theory and differential geometry.
This open access book provides an extensive treatment of Hardy inequalities and closely related topics from the point of view of Folland and Stein's homogeneous (Lie) groups. The place where Hardy inequalities and homogeneous groups meet is a beautiful area of mathematics with links to many other subjects. While describing the general theory of Hardy, Rellich, Caffarelli-Kohn-Nirenberg, Sobolev, and other inequalities in the setting of general homogeneous groups, the authors pay particular attention to the special class of stratified groups. In this environment, the theory of Hardy inequalities becomes intricately intertwined with the properties of sub-Laplacians and subelliptic partial differential equations. These topics constitute the core of this book and they are complemented by additional, closely related topics such as uncertainty principles, function spaces on homogeneous groups, the potential theory for stratified groups, and the potential theory for general Hoermander's sums of squares and their fundamental solutions. This monograph is the winner of the 2018 Ferran Sunyer i Balaguer Prize, a prestigious award for books of expository nature presenting the latest developments in an active area of research in mathematics. As can be attested as the winner of such an award, it is a vital contribution to literature of analysis not only because it presents a detailed account of the recent developments in the field, but also because the book is accessible to anyone with a basic level of understanding of analysis. Undergraduate and graduate students as well as researchers from any field of mathematical and physical sciences related to analysis involving functional inequalities or analysis of homogeneous groups will find the text beneficial to deepen their understanding.
The book describes the life of Henri Poincare, his work style and in detail most of his unique achievements in mathematics and physics. Apart from biographical details, attention is given to Poincare's contributions to automorphic functions, differential equations and dynamical systems, celestial mechanics, mathematical physics in particular the theory of the electron and relativity, topology (analysis situs). A chapter on philosophy explains Poincare's conventionalism in mathematics and his view of conventionalism in physics; the latter has a very different character. In the foundations of mathematics his position is between intuitionism and axiomatics. One of the purposes of the book is to show how Poincare reached his fundamentally new results in many different fields, how he thought and how one should read him. One of the new aspects is the description of two large fields of his attention: dynamical systems as presented in his book on `new methods for celestial mechanics' and his theoretical physics papers. At the same time it will be made clear how analysis and geometry are intertwined in Poincare's thinking and work.In dynamical systems this becomes clear in his description of invariant manifolds, his association of differential equation flow with mappings and his fixed points theory. There is no comparable book on Poincare, presenting such a relatively complete vision of his life and achievements. There exist some older biographies in the French language, but they pay only restricted attention to his actual work. The reader can obtain from this book many insights in the working of a very original mind while at the same time learning about fundamental results for modern science
Introduction to Traveling Waves is an invitation to research focused on traveling waves for undergraduate and masters level students. Traveling waves are not typically covered in the undergraduate curriculum, and topics related to traveling waves are usually only covered in research papers, except for a few texts designed for students. This book includes techniques that are not covered in those texts. Through their experience involving undergraduate and graduate students in a research topic related to traveling waves, the authors found that the main difficulty is to provide reading materials that contain the background information sufficient to start a research project without an expectation of an extensive list of prerequisites beyond regular undergraduate coursework. This book meets that need and serves as an entry point into research topics about the existence and stability of traveling waves. Features Self-contained, step-by-step introduction to nonlinear waves written assuming minimal prerequisites, such as an undergraduate course on linear algebra and differential equations. Suitable as a textbook for a special topics course, or as supplementary reading for courses on modeling. Contains numerous examples to support the theoretical material. Supplementary MATLAB codes available via GitHub.
Disorder is one of the central topics in science today. Over the past 15 years various aspects of the effects of disorder have changed a number of paradigms in mathematics and physics. One such effect is a phenomenon called localization, which describes the very strange behaviour of waves in random media. Instead of travelling through space as they do in ordered environments, localized waves stay in a confined region and are caught by disorder. This work is the first treatment of the subject in monograph or textbook form. The study of disorder has generated enormous research activity in mathematics and physics. Over the past 15 years various aspects of the subject have changed a number of paradigms and have inspired the discovery of deep mathematical techniques to deal with complex problems arising from the effects of disorder. One important effect is a phenomenon called localization, which describes the very strange behaviour of waves in random media -the fact that waves, instead of travelling through space as they do in ordered environments, stay in a confined region (caught by disorder). To date, there is no treatment of this subject in monograph or textbook form. This book fills that gap. "Caught by Disorder" presents: an introduction to disorder that can be grasped by graduate students in a hands-on way; a concise, mathematically rigorous examination of some particular models of disordered systems; a detailed application of the localization phenomenon, worked out in two typical model classes that keep the technicalities at a reasonable level; a thorough examination of new mathematical machinery, in particular, the method of multi-scale analysis; a number of key unsolved problems; an appendix containing the prerequisites of operator theory, as well as other proofs; and examples, illustrations, comprehensive bibliography, author and keyword index. Mathematical background for this book requires only a knowledge of pdes, functional analysis - mainly operator theory and spectral theory - and elementary probability theory.
This book addresses recent developments in mathematical analysis and computational methods for solving direct and inverse problems for Maxwell's equations in periodic structures. The fundamental importance of the fields is clear, since they are related to technology with significant applications in optics and electromagnetics. The book provides both introductory materials and in-depth discussion to the areas in diffractive optics that offer rich and challenging mathematical problems. It is also intended to convey up-to-date results to students and researchers in applied and computational mathematics, and engineering disciplines as well.
Willem's book is devoted to minimax theorems and their applications to partial differential equations. Presenting basic minimax theorems in a simple and unified way, this book may serve as a textbook for advanced graduate students in partial differential equations.
Nonlinear elliptic problems play an increasingly important role in
mathematics, science and engineering, creating an exciting
interplay between the subjects. This is the first and only book to
prove in a systematic and unifying way, stability, convergence and
computing results for the different numerical methods for nonlinear
elliptic problems. The proofs use linearization, compact
perturbation of the coercive principal parts, or monotone operator
techniques, and approximation theory. Examples are given for linear
to fully nonlinear problems (highest derivatives occur nonlinearly)
and for the most important space discretization methods: conforming
and nonconforming finite element, discontinuous Galerkin, finite
difference, wavelet (and, in a volume to follow, spectral and
meshfree) methods. A number of specific long open problems are
solved here: numerical methods for fully nonlinear elliptic
problems, wavelet and meshfree methods for nonlinear problems, and
more general nonlinear boundary conditions. We apply it to all
these problems and methods, in particular to eigenvalues, monotone
operators, quadrature approximations, and Newton methods.
Adaptivity is discussed for finite element and wavelet methods.
Current research and applications in nonlinear analysis influenced by Haim Brezis and Louis Nirenberg are presented in this book by leading mathematicians. Each contribution aims to broaden reader's understanding of theories, methods, and techniques utilized to solve significant problems. Topics include: Sobolev Spaces Maximal monotone operators A theorem of Brezis-Nirenberg Operator-norm convergence of the Trotter product formula Elliptic operators with infinitely many variables Pseudo-and quasiconvexities for nonsmooth function Anisotropic surface measures Eulerian and Lagrangian variables Multiple periodic solutions of Lagrangian systems Porous medium equation Nondiscrete Lassonde-Revalski principle Graduate students and researchers in mathematics, physics, engineering, and economics will find this book a useful reference for new techniques and research areas. Haim Brezis and Louis Nirenberg's fundamental research in nonlinear functional analysis and nonlinear partial differential equations along with their years of teaching and training students have had a notable impact in the field. |
You may like...
Galois Theory and Modular Forms
Ki-Ichiro Hashimoto, Katsuya Miyake, …
Hardcover
R4,228
Discovery Miles 42 280
Web Services - Concepts, Methodologies…
Information Reso Management Association
Hardcover
R8,957
Discovery Miles 89 570
Web Technologies & Applications
Sammulal Porika, M Peddi Kishore
Hardcover
Assembly Language Using the Raspberry Pi…
Robert Dunne
Hardcover
|