![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Differential equations
Designed for a rigorous first course in ordinary differential equations, Ordinary Differential Equations: Introduction and Qualitative Theory, Third Edition includes basic material such as the existence and properties of solutions, linear equations, autonomous equations, and stability as well as more advanced topics in periodic solutions of nonlinear equations. Requiring only a background in advanced calculus and linear algebra, the text is appropriate for advanced undergraduate and graduate students in mathematics, engineering, physics, chemistry, or biology. This third edition of a highly acclaimed textbook provides a detailed account of the Bendixson theory of solutions of two-dimensional nonlinear autonomous equations, which is a classical subject that has become more prominent in recent biological applications. By using the Poincare method, it gives a unified treatment of the periodic solutions of perturbed equations. This includes the existence and stability of periodic solutions of perturbed nonautonomous and autonomous equations (bifurcation theory). The text shows how topological degree can be applied to extend the results. It also explains that using the averaging method to seek such periodic solutions is a special case of the use of the Poincare method.
Despite the fact that Sophus Lie's theory was virtually the only systematic method for solving nonlinear ordinary differential equations (ODEs), it was rarely used for practical problems because of the massive amount of calculations involved. But with the advent of computer algebra programs, it became possible to apply Lie theory to concrete problems. Taking this approach, Algorithmic Lie Theory for Solving Ordinary Differential Equations serves as a valuable introduction for solving differential equations using Lie's theory and related results. After an introductory chapter, the book provides the mathematical foundation of linear differential equations, covering Loewy's theory and Janet bases. The following chapters present results from the theory of continuous groups of a 2-D manifold and discuss the close relation between Lie's symmetry analysis and the equivalence problem. The core chapters of the book identify the symmetry classes to which quasilinear equations of order two or three belong and transform these equations to canonical form. The final chapters solve the canonical equations and produce the general solutions whenever possible as well as provide concluding remarks. The appendices contain solutions to selected exercises, useful formulae, properties of ideals of monomials, Loewy decompositions, symmetries for equations from Kamke's collection, and a brief description of the software system ALLTYPES for solving concrete algebraic problems.
This reference details valuable results that lead to improvements in existence theorems for the Loewner differential equation in higher dimensions, discusses the compactness of the analog of the Caratheodory class in several variables, and studies various classes of univalent mappings according to their geometrical definitions. It introduces the infinite-dimensional theory and provides numerous exercises in each chapter for further study. The authors present such topics as linear invariance in the unit disc, Bloch functions and the Bloch constant, and growth, covering and distortion results for starlike and convex mappings in Cn and complex Banach spaces.
Although research in curve shortening flow has been very active for nearly 20 years, the results of those efforts have remained scattered throughout the literature. For the first time, The Curve Shortening Problem collects and illuminates those results in a comprehensive, rigorous, and self-contained account of the fundamental results. The authors present a complete treatment of the Gage-Hamilton theorem, a clear, detailed exposition of Grayson's convexity theorem, a systematic discussion of invariant solutions, applications to the existence of simple closed geodesics on a surface, and a new, almost convexity theorem for the generalized curve shortening problem. Many questions regarding curve shortening remain outstanding. With its careful exposition and complete guide to the literature, The Curve Shortening Problem provides not only an outstanding starting point for graduate students and new investigations, but a superb reference that presents intriguing new results for those already active in the field.
Following Witten's remarkable discovery of the quantum mechanical scheme in which all the salient features of supersymmetry are embedded, SCQM (supersymmetric classical and quantum mechanics) has become a separate area of research . In recent years, progress in this field has been dramatic and the literature continues to grow. Until now, no book has offered an overview of the subject with enough detail to allow readers to become rapidly familiar with its key ideas and methods. Supersymmetry in Classical and Quantum Mechanics offers that overview and summarizes the major developments of the last 15 years. It provides both an up-to-date review of the literature and a detailed exposition of the underlying SCQM principles. For those just beginning in the field, the author presents step-by-step details of most of the computations. For more experienced readers, the treatment includes systematic analyses of more advanced topics, such as quasi- and conditional solvability and the role of supersymmetry in nonlinear systems.
This work thoroughly covers the concepts and main results of probability theory, from its fundamental principles to advanced applications. This edition provides examples early in the text of practical problems such as the safety of a piece of engineering equipment or the inevitability of wrong conclusions in seemingly accurate medical tests for AIDS and cancer.;College or university bookstores may order five or more copies at a special student price which is available upon request from Marcel Dekker, Inc.
Partial Difference Equations treats this major class of functional relations. Such equations have recursive structures so that the usual concepts of increments are important. This book describes mathematical methods that help in dealing with recurrence relations that govern the behavior of variables such as population size and stock price. It is helpful for anyone who has mastered undergraduate mathematical concepts. It offers a concise introduction to the tools and techniques that have proven successful in obtaining results in partial difference equations.
Although the theory of well-posed Cauchy problems is reasonably understood, ill-posed problems-involved in a numerous mathematical models in physics, engineering, and finance- can be approached in a variety of ways. Historically, there have been three major strategies for dealing with such problems: semigroup, abstract distribution, and regularization methods. Semigroup and distribution methods restore well-posedness, in a modern weak sense. Regularization methods provide approximate solutions to ill-posed problems. Although these approaches were extensively developed over the last decades by many researchers, nowhere could one find a comprehensive treatment of all three approaches. Abstract Cauchy Problems: Three Approaches provides an innovative, self-contained account of these methods and, furthermore, demonstrates and studies some of the profound connections between them. The authors discuss the application of different methods not only to the Cauchy problem that is not well-posed in the classical sense, but also to important generalizations: the Cauchy problem for inclusion and the Cauchy problem for second order equations. Accessible to nonspecialists and beginning graduate students, this volume brings together many different ideas to serve as a reference on modern methods for abstract linear evolution equations.
Celebrating the work of a renowned mathematician, it is our pleasure to present this volume containing the proceedings of the conference "Nonlinear Elliptic and Parabolic Problems: A Special Tribute to the Work of Herbert Amann", held in Zurich, June 28-30, 2004. Herbert Amann had a signi?cant and decisive impact in developing N- linear Analysis and one goal of this conference was to re?ect his broad scienti?c interest. It is our hope that this collection of papers gives the reader some idea of the subjects in which Herbert Amann had and still has a deep in?uence. Of particular importance are ?uid dynamics, reaction-di?usion systems, bifurcation theory,maximalregularity,evolutionequations,andthe theory offunction spaces. The organizers thank the following institutions for provided support for the conference: * Swiss National Foundation * Z.. urcher Hochschulstiftung * Z.. urcher Universit. atsverein * Mathematisch-naturwissenschaftliche Fakult. at (MNF). Finally,itisourpleasuretothankallcontributors,referees,andBirkh. auserVerlag, particularly T. Hemp?ing for their help and cooperation in making possible this volume.
In recent years, stylized forms of the Boltzmann equation, now going by the name of "Lattice Boltzmann equation" (LBE), have emerged, which relinquish most mathematical complexities of the true Boltzmann equation without sacrificing physical fidelity in the description of many situations involving complex fluid motion. This book provides the first detailed survey of LBE theory and its major applications to date. Accessible to a broad audience of scientists dealing with complex system dynamics, the book also portrays future developments in allied areas of science (material science, biology etc.) where fluid motion plays a distinguished role.
This is an introductory level textbook for partial differential equations (PDEs). It is suitable for a one-semester undergraduate level or two-semester graduate level course in PDEs or applied mathematics. This volume is application-oriented and rich in examples. Going through these examples, the reader is able to easily grasp the basics of PDEs.Chapters One to Five are organized to aid understanding of the basic PDEs. They include the first-order equations and the three fundamental second-order equations, i.e. the heat, wave and Laplace equations. Through these equations, we learn the types of problems, how we pose the problems, and the methods of solutions such as the separation of variables and the method of characteristics. The modeling aspects are explained as well. The methods introduced in earlier chapters are developed further in Chapters Six to Twelve. They include the Fourier series, the Fourier and the Laplace transforms, and the Green's functions. Equations in higher dimensions are also discussed in detail. In this second edition, a new chapter is added and numerous improvements have been made including the reorganization of some chapters. Extensions of nonlinear equations treated in earlier chapters are also discussed.Partial differential equations are becoming a core subject in Engineering and the Sciences. This textbook will greatly benefit those studying in these subjects by covering basic and advanced topics in PDEs based on applications.
Equations of Mathematical Diffraction Theory focuses on the comparative analysis and development of efficient analytical methods for solving equations of mathematical diffraction theory. Following an overview of some general properties of integral and differential operators in the context of the linear theory of diffraction processes, the authors provide estimates of the operator norms for various ranges of the wave number variation, and then examine the spectral properties of these operators. They also present a new analytical method for constructing asymptotic solutions of boundary integral equations in mathematical diffraction theory for the high-frequency case. Clearly demonstrating the close connection between heuristic and rigorous methods in mathematical diffraction theory, this valuable book provides you with the differential and integral equations that can easily be used in practical applications.
Want to know not just what makes rockets go up but how to do it optimally? Optimal control theory has become such an important field in aerospace engineering that no graduate student or practicing engineer can afford to be without a working knowledge of it. This is the first book that begins from scratch to teach the reader the basic principles of the calculus of variations, develop the necessary conditions step-by-step, and introduce the elementary computational techniques of optimal control. This book, with problems and an online solution manual, provides the graduate-level reader with enough introductory knowledge so that he or she can not only read the literature and study the next level textbook but can also apply the theory to find optimal solutions in practice. No more is needed than the usual background of an undergraduate engineering, science, or mathematics program: namely calculus, differential equations, and numerical integration. Although finding optimal solutions for these problems is a complex process involving the calculus of variations, the authors carefully lay out step-by-step the most important theorems and concepts. Numerous examples are worked to demonstrate how to apply the theories to everything from classical problems (e.g., crossing a river in minimum time) to engineering problems (e.g., minimum-fuel launch of a satellite). Throughout the book use is made of the time-optimal launch of a satellite into orbit as an important case study with detailed analysis of two examples: launch from the Moon and launch from Earth. For launching into the field of optimal solutions, look no further!
This book is a collection of lecture notes for the LIASFMA Shanghai Summer School on 'One-dimensional Hyperbolic Conservation Laws and Their Applications' which was held during August 16 to August 27, 2015 at Shanghai Jiao Tong University, Shanghai, China. This summer school is one of the activities promoted by Sino-French International Associate Laboratory in Applied Mathematics (LIASFMA in short). LIASFMA was established jointly by eight institutions in China and France in 2014, which is aimed at providing a platform for some of the leading French and Chinese mathematicians to conduct in-depth researches, extensive exchanges, and student training in the field of applied mathematics. This summer school has the privilege of being the first summer school of the newly established LIASFMA, which makes it significant.
This book contains the latest advances in variational analysis and set / vector optimization, including uncertain optimization, optimal control and bilevel optimization. Recent developments concerning scalarization techniques, necessary and sufficient optimality conditions and duality statements are given. New numerical methods for efficiently solving set optimization problems are provided. Moreover, applications in economics, finance and risk theory are discussed. Summary The objective of this book is to present advances in different areas of variational analysis and set optimization, especially uncertain optimization, optimal control and bilevel optimization. Uncertain optimization problems will be approached from both a stochastic as well as a robust point of view. This leads to different interpretations of the solutions, which widens the choices for a decision-maker given his preferences. Recent developments regarding linear and nonlinear scalarization techniques with solid and nonsolid ordering cones for solving set optimization problems are discussed in this book. These results are useful for deriving optimality conditions for set and vector optimization problems. Consequently, necessary and sufficient optimality conditions are presented within this book, both in terms of scalarization as well as generalized derivatives. Moreover, an overview of existing duality statements and new duality assertions is given. The book also addresses the field of variable domination structures in vector and set optimization. Including variable ordering cones is especially important in applications such as medical image registration with uncertainties. This book covers a wide range of applications of set optimization. These range from finance, investment, insurance, control theory, economics to risk theory. As uncertain multi-objective optimization, especially robust approaches, lead to set optimization, one main focus of this book is uncertain optimization. Important recent developments concerning numerical methods for solving set optimization problems sufficiently fast are main features of this book. These are illustrated by various examples as well as easy-to-follow-steps in order to facilitate the decision process for users. Simple techniques aimed at practitioners working in the fields of mathematical programming, finance and portfolio selection are presented. These will help in the decision-making process, as well as give an overview of nondominated solutions to choose from.
Celebrating the work of renowned mathematician Jerome A. Goldstein, this reference compiles original research on the theory and application of evolution equations to stochastics, physics, engineering, biology, and finance. The text explores a wide range of topics in linear and nonlinear semigroup theory, operator theory, functional analysis, and linear and nonlinear partial differential equations, and studies the latest theoretical developments and uses of evolution equations in a variety of disciplines. Providing nearly 500 references, the book contains discussions by renowned mathematicians such as H. Brezis, G. Da Prato, N.E. Gretskij, I. Lasiecka, Peter Lax, M. M. Rao, and R. Triggiani.
General Fractional Derivatives: Theory, Methods and Applications provides knowledge of the special functions with respect to another function, and the integro-differential operators where the integrals are of the convolution type and exist the singular, weakly singular and nonsingular kernels, which exhibit the fractional derivatives, fractional integrals, general fractional derivatives, and general fractional integrals of the constant and variable order without and with respect to another function due to the appearance of the power-law and complex herbivores to figure out the modern developments in theoretical and applied science. Features: Give some new results for fractional calculus of constant and variable orders. Discuss some new definitions for fractional calculus with respect to another function. Provide definitions for general fractional calculus of constant and variable orders. Report new results of general fractional calculus with respect to another function. Propose news special functions with respect to another function and their applications. Present new models for the anomalous relaxation and rheological behaviors. This book serves as a reference book and textbook for scientists and engineers in the fields of mathematics, physics, chemistry and engineering, senior undergraduate and graduate students. Dr. Xiao-Jun Yang is a full professor of Applied Mathematics and Mechanics, at China University of Mining and Technology, China. He is currently an editor of several scientific journals, such as Fractals, Applied Numerical Mathematics, Mathematical Modelling and Analysis, International Journal of Numerical Methods for Heat & Fluid Flow, and Thermal Science.
Inequalities arise as an essential component in various mathematical areas. Besides forming a highly important collection of tools, e.g. for proving analytic or stochastic theorems or for deriving error estimates in numerical mathematics, they constitute a challenging research field of their own. Inequalities also appear directly in mathematical models for applications in science, engineering, and economics. This edited volume covers divers aspects of this fascinating field. It addresses classical inequalities related to means or to convexity as well as inequalities arising in the field of ordinary and partial differential equations, like Sobolev or Hardy-type inequalities, and inequalities occurring in geometrical contexts. Within the last five decades, the late Wolfgang Walter has made great contributions to the field of inequalities. His book on differential and integral inequalities was a real breakthrough in the 1970 s and has generated a vast variety of further research in this field. He also organized six of the seven General Inequalities Conferences held at Oberwolfach between 1976 and 1995, and co-edited their proceedings. He participated as an honorary member of the Scientific Committee in the General Inequalities 8 conference in Hungary. As a recognition of his great achievements, this volume is dedicated to Wolfgang Walter s memory. The General Inequalities meetings found their continuation in the Conferences on Inequalities and Applications which, so far, have been held twice in Hungary. This volume contains selected contributions of participants of the second conference which took place in Hajduszoboszlo in September 2010, as well as additional articles written upon invitation. These contributions reflect many theoretical and practical aspects in the field of inequalities, and will be useful for researchers and lecturers, as well as for students who want to familiarize themselves with the area.
Marking a distinct departure from the perspectives of frame theory and discrete transforms, this book provides a comprehensive mathematical and algorithmic introduction to wavelet theory. As such, it can be used as either a textbook or reference guide. As a textbook for graduate mathematics students and beginning researchers, it offers detailed information on the basic theory of framelets and wavelets, complemented by self-contained elementary proofs, illustrative examples/figures, and supplementary exercises. Further, as an advanced reference guide for experienced researchers and practitioners in mathematics, physics, and engineering, the book addresses in detail a wide range of basic and advanced topics (such as multiwavelets/multiframelets in Sobolev spaces and directional framelets) in wavelet theory, together with systematic mathematical analysis, concrete algorithms, and recent developments in and applications of framelets and wavelets. Lastly, the book can also be used to teach on or study selected special topics in approximation theory, Fourier analysis, applied harmonic analysis, functional analysis, and wavelet-based signal/image processing.
This volume provides an in-depth treatment of several equations and systems of mathematical physics, describing the propagation and interaction of nonlinear waves as different modifications of these: the KdV equation, Fornberg-Whitham equation, Vakhnenko equation, Camassa-Holm equation, several versions of the NLS equation, Kaup-Kupershmidt equation, Boussinesq paradigm, and Manakov system, amongst others, as well as symmetrizable quasilinear hyperbolic systems arising in fluid dynamics.Readers not familiar with the complicated methods used in the theory of the equations of mathematical physics (functional analysis, harmonic analysis, spectral theory, topological methods, a priori estimates, conservation laws) can easily be acquainted here with different solutions of some nonlinear PDEs written in a sharp form (waves), with their geometrical visualization and their interpretation. In many cases, explicit solutions (waves) having specific physical interpretation (solitons, kinks, peakons, ovals, loops, rogue waves) are found and their interactions are studied and geometrically visualized. To do this, classical methods coming from the theory of ordinary differential equations, the dressing method, Hirota's direct method and the method of the simplest equation are introduced and applied. At the end, the paradifferential approach is used.This volume is self-contained and equipped with simple proofs. It contains many exercises and examples arising from the applications in mechanics, physics, optics and, quantum mechanics.
Most of the natural and biological phenomena such as solute
transport in porous media exhibit variability which can not be
modeled by using deterministic approaches. There is evidence in
natural phenomena to suggest that some of the observations can not
be explained by using the models which give deterministic
solutions. Stochastic processes have a rich repository of objects
which can be used to express the randomness inherent in the system
and the evolution of the system over time. The attractiveness of
the stochastic differential equations (SDE) and stochastic partial
differential equations (SPDE) come from the fact that we can
integrate the variability of the system along with the scientific
knowledge pertaining to the system. One of the aims of this book is
to explaim some useufl concepts in stochastic dynamics so that the
scientists and engineers with a background in undergraduate
differential calculus could appreciate the applicability and
appropriateness of these developments in mathematics. The ideas are
explained in an intuitive manner wherever possible with out
compromising rigor.
This book discusses almost periodic and almost automorphic solutions to abstract integro-differential Volterra equations that are degenerate in time, and in particular equations whose solutions are governed by (degenerate) solution operator families with removable singularities at zero. It particularly covers abstract fractional equations and inclusions with multivalued linear operators as well as abstract fractional semilinear Cauchy problems.
This book studies the 20th century evolution of essential ideas in mathematical analysis, a field that since the times of Newton and Leibnitz has been one of the most important and prestigious in mathematics. Each chapter features a comprehensive first part on developments during the period 1900-1950, and then provides outlooks on representative achievements during the later part of the century. The book will be an interesting and useful reference for graduate students and lecturers in mathematics, professional mathematicians and historians of science, as well as the interested layperson.
The authors give a systematic introduction to boundary value problems (BVPs) for ordinary differential equations. The book is a graduate level text and good to use for individual study. With the relaxed style of writing, the reader will find it to be an enticing invitation to join this important area of mathematical research. Starting with the basics of boundary value problems for ordinary differential equations, linear equations and the construction of Green's functions are presented clearly.A discussion of the important question of the existence of solutions to both linear and nonlinear problems plays a central role in this volume and this includes solution matching and the comparison of eigenvalues.The important and very active research area on existence and multiplicity of positive solutions is treated in detail. The last chapter is devoted to nodal solutions for BVPs with separated boundary conditions as well as for non-local problems.While this Volume II complements , it can be used as a stand-alone work.
Accurate modeling of the interaction between convective and diffusive processes is one of the most common challenges in the numerical approximation of partial differential equations. This is partly due to the fact that numerical algorithms, and the techniques used for their analysis, tend to be very different in the two limiting cases of elliptic and hyperbolic equations. Many different ideas and approaches have been proposed in widely differing contexts to resolve the difficulties of exponential fitting, compact differencing, number upwinding, artificial viscosity, streamline diffusion, Petrov-Galerkin and evolution Galerkin being some examples from the main fields of finite difference and finite element methods. The main aim of this volume is to draw together all these ideas and see how they overlap and differ. The reader is provided with a useful and wide ranging source of algorithmic concepts and techniques of analysis. The material presented has been drawn both from theoretically oriented literature on finite differences, finite volume and finite element methods and also from accounts of practical, large-scale computing, particularly in the field of computational fluid dynamics. |
You may like...
Boundary Elements and other Mesh…
A. H.-D. Cheng, S. Syngellakis
Hardcover
R3,109
Discovery Miles 31 090
Differential Equations with…
Warren Wright, Dennis Zill
Paperback
(1)
Differential Equations with Linear…
Matthew R. Boelkins, Jack L. Goldberg, …
Hardcover
R2,869
Discovery Miles 28 690
Nonlinear Systems - Theoretical Aspects…
Walter Legnani, Terry E. Moschandreou
Hardcover
R3,113
Discovery Miles 31 130
|