![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Differential equations
This book presents, in a unitary frame and from a new perspective, the main concepts and results of one of the most fascinating branches of modern mathematics, namely differential equations, and offers the reader another point of view concerning a possible way to approach the problems of existence, uniqueness, approximation, and continuation of the solutions to a Cauchy problem. In addition, it contains simple introductions to some topics which are not usually included in classical textbooks: the exponential formula, conservation laws, generalized solutions, Caratheodory solutions, differential inclusions, variational inequalities, viability, invariance, and gradient systems.In this new edition, some typos have been corrected and two new topics have been added: Delay differential equations and differential equations subjected to nonlocal initial conditions. The bibliography has also been updated and expanded.
This textbook is intended for college, undergraduate and graduate students, emphasizing mainly on ordinary differential equations. However, the theory of characteristics for first order partial differential equations and the classification of second order linear partial differential operators are also included. It contains the basic material starting from elementary solution methods for ordinary differential equations to advanced methods for first order partial differential equations.In addition to the theoretical background, solution methods are strongly emphasized. Each section is completed with problems and exercises, and the solutions are also provided. There are special sections devoted to more applied tools such as implicit equations, Laplace transform, Fourier method, etc. As a novelty, a method for finding exponential polynomial solutions is presented which is based on the author's work in spectral synthesis. The presentation is self-contained, provided the reader has general undergraduate knowledge.
This textbook is intended for college, undergraduate and graduate students, emphasizing mainly on ordinary differential equations. However, the theory of characteristics for first order partial differential equations and the classification of second order linear partial differential operators are also included. It contains the basic material starting from elementary solution methods for ordinary differential equations to advanced methods for first order partial differential equations.In addition to the theoretical background, solution methods are strongly emphasized. Each section is completed with problems and exercises, and the solutions are also provided. There are special sections devoted to more applied tools such as implicit equations, Laplace transform, Fourier method, etc. As a novelty, a method for finding exponential polynomial solutions is presented which is based on the author's work in spectral synthesis. The presentation is self-contained, provided the reader has general undergraduate knowledge.
Variational methods are very powerful techniques in nonlinear analysis and are extensively used in many disciplines of pure and applied mathematics (including ordinary and partial differential equations, mathematical physics, gauge theory, and geometrical analysis).In our first chapter, we gather the basic notions and fundamental theorems that will be applied throughout the chapters. While many of these items are easily available in the literature, we gather them here both for the convenience of the reader and for the purpose of making this volume somewhat self-contained. Subsequent chapters deal with how variational methods can be used in fourth-order problems, Kirchhoff problems, nonlinear field problems, gradient systems, and variable exponent problems. A very extensive bibliography is also included.
This book is intended to be both a thorough introduction to contemporary research in optimization theory for elliptic systems with its numerous applications and a textbook at the undergraduate and graduate level for courses in pure or applied mathematics or in continuum mechanics. Various processes of modern technology and production are described by el liptic partial differential equations. Optimization of these processes reduces to op timization problems for elliptic systems. The numerical solution of such problems is associated with the solution of the following questions. 1. The setting of the optimization problem ensuring the existence of a solution on a set of admissible controls, which is a subset of some infinite-dimensional vector space. 2. Reduction of the infinite-dimensional optimization problem to a sequence of finite-dimensional problems such that the solutions of the finite-dimensional problems converge, in a sense, to the solution of the infinite-dimensional problem. 3. Numerical solution of the finite-dimensional problems."
This text presents numerical differential equations to graduate (doctoral) students. It includes the three standard approaches to numerical PDE, FDM, FEM and CM, and the two most common time stepping techniques, FDM and Runge-Kutta. We present both the numerical technique and the supporting theory.The applied techniques include those that arise in the present literature. The supporting mathematical theory includes the general convergence theory. This material should be readily accessible to students with basic knowledge of mathematical analysis, Lebesgue measure and the basics of Hilbert spaces and Banach spaces. Nevertheless, we have made the book free standing in most respects. Most importantly, the terminology is introduced, explained and developed as needed.The examples presented are taken from multiple vital application areas including finance, aerospace, mathematical biology and fluid mechanics. The text may be used as the basis for several distinct lecture courses or as a reference. For instance, this text will support a general applications course or an FEM course with theory and applications. The presentation of material is empirically-based as more and more is demanded of the reader as we progress through the material. By the end of the text, the level of detail is reminiscent of journal articles. Indeed, it is our intention that this material be used to launch a research career in numerical PDE.
This reference book presents unique and traditional analytic calculations, and features more than a hundred universal formulas where one can calculate by hand enormous numbers of definite integrals, fractional derivatives and inverse operators. Despite the great success of numerical calculations due to computer technology, analytical calculations still play a vital role in the study of new, as yet unexplored, areas of mathematics, physics and other branches of sciences. Readers, including non-specialists, can obtain themselves universal formulas and define new special functions in integral and series representations by using the methods expounded in this book. This applies to anyone utilizing analytical calculations in their studies.
This book is devoted to the study of boundary value problems for nonlinear ordinary differential equations and focuses on questions related to the study of nonlinear interpolation. In 1967, Andrzej Lasota and Zdzislaw Opial showed that, under suitable hypotheses, if solutions of a second-order nonlinear differential equation passing through two distinct points are unique, when they exist, then, in fact, a solution passing through two distinct points does exist. That result, coupled with the pioneering work of Philip Hartman on what was then called unrestricted n-parameter families, has stimulated 50 years of development in the study of solutions of boundary value problems as nonlinear interpolation problems.The purpose of this book is two-fold. First, the results that have been generated in the past 50 years are collected for the first time to produce a comprehensive and coherent treatment of what is now a well-defined area of study in the qualitative theory of ordinary differential equations. Second, methods and technical tools are sufficiently exposed so that the interested reader can contribute to the study of nonlinear interpolation.
This text will be divided into two books which cover the topic of numerical partial differential equations. Of the many different approaches to solving partial differential equations numerically, this book studies difference methods. Written for the beginning graduate student, this text offers a means of coming out of a course with a large number of methods which provide both theoretical knowledge and numerical experience. The reader will learn that numerical experimentation is a part of the subject of numerical solution of partial differential equations, and will be shown some uses and taught some techniques of numerical experimentation.
This book groups material that was used for the Marrakech 2002 School on Delay Di?erential Equations and Applications. The school was held from September 9-21 2002 at the Semlalia College of Sciences of the Cadi Ayyad University, Marrakech, Morocco. 47 participants and 15 instructors originating from 21 countries attended the school. Fin- cial limitations only allowed support for part of the people from Africa andAsiawhohadexpressedtheirinterestintheschoolandhadhopedto come. Theschoolwassupportedby?nancementsfromNATO-ASI(Nato advanced School), the International Centre of Pure and Applied Mat- matics (CIMPA, Nice, France) and Cadi Ayyad University. The activity of the school consisted in courses, plenary lectures (3) and communi- tions (9), from Monday through Friday, 8. 30 am to 6. 30 pm. Courses were divided into units of 45mn duration, taught by block of two units, with a short 5mn break between two units within a block, and a 25mn break between two blocks. The school was intended for mathematicians willing to acquire some familiarity with delay di?erential equations or enhance their knowledge on this subject. The aim was indeed to extend the basic set of knowledge, including ordinary di?erential equations and semilinearevolutionequations, suchasforexamplethedi?usion-reaction equations arising in morphogenesis or the Belouzov-Zhabotinsky ch- ical reaction, and the classic approach for the resolution of these eq- tions by perturbation, to equations having in addition terms involving past values of the solution
Vladimir Arnold was one of the great mathematical scientists of our time. He is famous for both the breadth and the depth of his work. At the same time he is one of the most prolific and outstanding mathematical authors. This second volume of his Collected Works focuses on hydrodynamics, bifurcation theory, and algebraic geometry.
This volume comprises selected, revised papers from the Joint CIM-WIAS Workshop, TAAO 2017, held in Lisbon, Portugal, in December 2017. The workshop brought together experts from research groups at the Weierstrass Institute in Berlin and mathematics centres in Portugal to present and discuss current scientific topics and to promote existing and future collaborations. The papers include the following topics: PDEs with applications to material sciences, thermodynamics and laser dynamics, scientific computing, nonlinear optimization and stochastic analysis.
This book is not a text devoted to a pedagogical presentation of a specialized topic nor is it a monograph focused on the author's area of research. It accomplishes both these things while providing a rationale for why the reader ought to be interested in learning about fractional calculus. This book is for researchers who has heard about many of these scientifically exotic activities, but could not see how they fit into their own scientific interests, or how they could be made compatible with the way they understand science. It is also for beginners who have not yet decided where their scientific talents could be most productively applied. The book provides insight into the long-term direction of science and show how to develop the skills necessary to successfully do research in the twenty-first century.
This volume contains a multiplicity of approaches brought to bear on problems varying from the formation of caustics and the propagation of waves at a boundary, to the examination of viscous boundary layers. It examines the foundations of the theory of high- frequency electromagnetic waves in a dielectric or semiconducting medium. Nor are unifying themes entirely absent from nonlinear analysis: one chapter considers microlocal analysis, including paradifferential operator calculus, on Morrey spaces, and connections with various classes of partial differential equations.
This book gives a comprehensive treatment of the fundamental necessary and sufficient conditions for optimality for finite-dimensional, deterministic, optimal control problems. The emphasis is on the geometric aspects of the theory and on illustrating how these methods can be used to solve optimal control problems. It provides tools and techniques that go well beyond standard procedures and can be used to obtain a full understanding of the global structure of solutions for the underlying problem. The text includes a large number and variety of fully worked out examples that range from the classical problem of minimum surfaces of revolution to cancer treatment for novel therapy approaches. All these examples, in one way or the other, illustrate the power of geometric techniques and methods. The versatile text contains material on different levels ranging from the introductory and elementary to the advanced. Parts of the text can be viewed as a comprehensive textbook for both advanced undergraduate and all level graduate courses on optimal control in both mathematics and engineering departments. The text moves smoothly from the more introductory topics to those parts that are in a monograph style were advanced topics are presented. While the presentation is mathematically rigorous, it is carried out in a tutorial style that makes the text accessible to a wide audience of researchers and students from various fields, including the mathematical sciences and engineering. Heinz Schattler is an Associate Professor at Washington University in St. Louis in the Department of Electrical and Systems Engineering, Urszula Ledzewicz is a Distinguished Research Professor at Southern Illinois University Edwardsville in the Department of Mathematics and Statistics.
Using Cartan's differential 1-forms theory, and assuming that the motion variables depend on Euclidean invariants, certain dynamics of the material point and systems of material points are developed. Within such a frame, the Newtonian force as mass inertial interaction at the intragalactic scale, and the Hubble-type repulsive interaction at intergalactic distances, are developed.The wave-corpuscle duality implies movements on curves of constant informational energy, which implies both quantizations and dynamics of velocity limits.Analysis of motion of a charged particle in a combined field which is electromagnetic and with constant magnetism implies fractal trajectories. Mechanics of material points in a fractalic space is constructed, and various applications - fractal atom, potential well, free particle, etc. - are discussed.
Variational methods and their generalizations have been verified to be useful tools in proving the existence of solutions to a variety of boundary value problems for ordinary, impulsive, and partial differential equations as well as for difference equations. In this monograph, we look at how variational methods can be used in all these settings. In our first chapter, we gather the basic notions and fundamental theorems that will be applied in the remainder of this monograph. While many of these items are easily available in the literature, we gather them here both for the convenience of the reader and for the purpose of making this volume somewhat self-contained. Subsequent chapters deal with the Sturm-Liouville problems, multi-point boundary value problems, problems with impulses, partial differential equations, and difference equations. An extensive bibliography is also included.
This special volume focuses on optimization and control of processes governed by partial differential equations. The contributors are mostly participants of the DFG-priority program 1253: Optimization with PDE-constraints which is active since 2006. The book is organized in sections which cover almost the entire spectrum of modern research in this emerging field. Indeed, even though the field of optimal control and optimization for PDE-constrained problems has undergone a dramatic increase of interest during the last four decades, a full theory for nonlinear problems is still lacking. The contributions of this volume, some of which have the character of survey articles, therefore, aim at creating and developing further new ideas for optimization, control and corresponding numerical simulations of systems of possibly coupled nonlinear partial differential equations. The research conducted within this unique network of groups in more than fifteen German universities focuses on novel methods of optimization, control and identification for problems in infinite-dimensional spaces, shape and topology problems, model reduction and adaptivity, discretization concepts and important applications. Besides the theoretical interest, the most prominent question is about the effectiveness of model-based numerical optimization methods for PDEs versus a black-box approach that uses existing codes, often heuristic-based, for optimization.
This is the first textbook-type presentation of tropical value distribution theory. It provides a detailed introduction of the tropical version of the Nevanlinna theory, describing growth and value distribution analysis of continuous, piecewise linear functions on the real axis. The book also includes applications of this theory to ultra-discrete equations. Three appendices are given to compare the contents of the theory with the classical counterparts in complex analysis.Detailed presentation of the proofs makes the book accessible for lecture courses and independent studies at the graduate and post-doctoral level.
Complete coverage of Differential Equations for one or two semester course Includes coverage of PDEs and linear algebra Chapter on Power Series and series solutions added to this edition Focus on modeling and applications Emphasis on numerical solutions
Many physical processes in fields such as mechanics,
thermodynamics, electricity, magnetism or optics are described by
means of partial differential equations. The aim of the present
book is to demontstrate the basic methods for solving the classical
linear problems in mathematical physics of elliptic, parabolic and
hyperbolic type. In particular, the methods of conformal mappings,
Fourier analysis and Greens functions are considered, as well as
the perturbation method and integral transformation method, among
others. Every chapter contains concrete examples with a detailed
analysis of their solution.
The book deals with dynamical systems, generated by linear mappings of finite dimensional spaces and their applications. These systems have a relatively simple structure from the point of view of the modern dynamical systems theory. However, for the dynamical systems of this sort, it is possible to obtain explicit answers to specific questions being useful in applications. The considered problems are natural and look rather simple, but in reality in the course of investigation, they confront users withplenty of subtle questions and their detailed analysis needs a substantial effort. The problems arising are related to linear algebra and dynamical systems theory, and therefore, the book can be considered as a natural amplification, refinement and supplement to linear algebra and dynamical systems theory textbooks."
This book presents advanced methods of integral calculus and the classical theory of the ordinary and partial differential equations. It provides explicit solutions of linear and nonlinear differential equations and implicit solutions with discrete approximations. Differential equations that could not be explicitly solved are discussed with special functions such as Bessel functions. New functions are defined from differential equations. Laguerre, Hermite and Legendre orthonormal polynomials as well as several extensions are also considered.It is illustrated by examples and graphs of functions, with each chapter containing exercises solved in the last chapter. |
You may like...
The Rhetorical Analysis of Scripture…
Stanley E. Porter, Thomas H Olbricht
Hardcover
R6,245
Discovery Miles 62 450
The Discourse of News Values - How News…
Monika Bednarek, Helen Caple
Hardcover
R3,579
Discovery Miles 35 790
Subject to Change - Jung, Gender and…
Polly Young-Eisendrath
Hardcover
R1,678
Discovery Miles 16 780
|