![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids > Dynamics & vibration
This book discusses stochastic dynamics of power systems and the related analytical methodology. It summarizes and categorizes the stochastic elements of power systems and develops a framework for research on stochastic dynamics of power systems. It also establishes a research model for stochastic dynamics of power systems and theoretically proves stochastic stability in power systems. Further, in addition to demonstrating the stochastic oscillation mechanism in power systems, it also proposes methods for quantitative analysis and stochastic optimum control in the field of stochastic dynamic security in power systems. This book is a valuable resource for researchers, scholars and engineers in the field of electrics.
Rotating Machinery, Vibro-Acoustics & Laser Vibrometry, Volume 7: Proceedings of the 36th IMAC, A Conference and Exposition on Structural Dynamics, 2018, the seveth volume of nine from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Rotating Machinery, Hybrid Testing, Vibro-Acoustics & Laser Vibrometry, including papers on: Rotating Machinery Vibro-Acoustics Experimental Techniques Scanning Laser Doppler Vibrometry Methods
Topics in Modal Analysis & Testing, Volume 9: Proceedings of the 36th IMAC, A Conference and Exposition on Structural Dynamics, 2018, the ninth volume of nine from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Modal Analysis, including papers on: Operational Modal & Modal Analysis Applications Experimental Techniques Modal Analysis, Measurements & Parameter Estimation Modal Vectors & Modeling Basics of Modal Analysis Additive Manufacturing & Modal Testing of Printed Parts
This book discusses the revolution of cycles and rhythms that is expected to take place in different branches of science and engineering in the 21st century, with a focus on communication and information processing. It presents high-quality papers in vibration sciences, rhythms and oscillations, neurosciences, mathematical sciences, and communication. It includes major topics in engineering and structural mechanics, computer sciences, biophysics and biomathematics, as well as other related fields. Offering valuable insights, it also inspires researchers to work in these fields. The papers included in this book were presented at the 1st International Conference on Engineering Vibration, Communication and Information Processing (ICoEVCI-2018), India.
This primer offers readers an introduction to the central concepts that form our modern understanding of complex and emergent behavior, together with detailed coverage of accompanying mathematical methods. All calculations are presented step by step and are easy to follow. This new fourth edition has been fully reorganized and includes new chapters, figures and exercises. The core aspects of modern complex system sciences are presented in the first chapters, covering network theory, dynamical systems, bifurcation and catastrophe theory, chaos and adaptive processes, together with the principle of self-organization in reaction-diffusion systems and social animals. Modern information theoretical principles are treated in further chapters, together with the concept of self-organized criticality, gene regulation networks, hypercycles and coevolutionary avalanches, synchronization phenomena, absorbing phase transitions and the cognitive system approach to the brain. Technical course prerequisites are the standard mathematical tools for an advanced undergraduate course in the natural sciences or engineering. Each chapter includes exercises and suggestions for further reading, and the solutions to all exercises are provided in the last chapter. From the reviews of previous editions: This is a very interesting introductory book written for a broad audience of graduate students in natural sciences and engineering. It can be equally well used both for teac hing and self-education. Very well structured and every topic is illustrated with simple and motivating examples. This is a true guidebook to the world of complex nonlinear phenomena. (Ilya Pavlyukevich, Zentralblatt MATH, Vol. 1146, 2008) Claudius Gros' Complex and Adaptive Dynamical Systems: A Primer is a welcome addition to the literature. A particular strength of the book is its emphasis on analytical techniques for studying complex systems. (David P. Feldman, Physics Today, July, 2009).
This book trains engineers and students in the practical application of machining dynamics, with a particular focus on milling. The book walks readers through the steps required to improve machining productivity through chatter avoidance and reduced surface location error, and covers in detail topics such as modal analysis (including experimental methods) to obtain the tool point frequency response function, descriptions of turning and milling, force modeling, time domain simulation, stability lobe diagram algorithms, surface location error calculation for milling, beam theory, and more. This new edition includes updates throughout the entire text, new exercises and examples, and a new chapter on machining tribology. It is a valuable resource for practicing manufacturing engineers and graduate students interested in learning how to improve machining productivity through consideration of the process dynamics.
This book provides readers with a timely snapshot of the potential offered by and challenges posed by signal processing methods in the field of machine diagnostics and condition monitoring. It gathers contributions to the first Workshop on Signal Processing Applied to Rotating Machinery Diagnostics, held in Setif, Algeria, on April 9-10, 2017, and organized by the Applied Precision Mechanics Laboratory (LMPA) at the Institute of Precision Mechanics, University of Setif, Algeria and the Laboratory of Mechanics, Modeling and Manufacturing (LA2MP) at the National School of Engineers of Sfax. The respective chapters highlight research conducted by the two laboratories on the following main topics: noise and vibration in machines; condition monitoring in non-stationary operations; vibro-acoustic diagnosis of machinery; signal processing and pattern recognition methods; monitoring and diagnostic systems; and dynamic modeling and fault detection.
This book presents the proceedings of the Symposium on Fluid-Structure-Sound Interactions and Control (FSSIC), (held in Tokyo on Aug. 21-24, 2017), which largely focused on advances in the theory, experiments on, and numerical simulation of turbulence in the contexts of flow-induced vibration, noise and their control. This includes several practical areas of application, such as the aerodynamics of road and space vehicles, marine and civil engineering, nuclear reactors and biomedical science, etc. Uniquely, these proceedings integrate acoustics with the study of flow-induced vibration, which is not a common practice but can be extremely beneficial to understanding, simulating and controlling vibration. The symposium provides a vital forum where academics, scientists and engineers working in all related branches can exchange and share their latest findings, ideas and innovations - bringing together researchers from both east and west to chart the frontiers of FSSIC.
IFToMM conferences have a history of success due to the various advances achieved in the field of rotor dynamics over the past three decades. These meetings have since become a leading global event, bringing together specialists from industry and academia to promote the exchange of knowledge, ideas, and information on the latest developments in the dynamics of rotating machinery. The scope of the conference is broad, including e.g. active components and vibration control, balancing, bearings, condition monitoring, dynamic analysis and stability, wind turbines and generators, electromechanical interactions in rotor dynamics and turbochargers. The proceedings are divided into four volumes. This second volume covers the following main topics: condition monitoring, fault diagnostics and prognostics; modal testing and identification; parametric and self-excitation in rotor dynamics; uncertainties, reliability and life predictions of rotating machinery; and torsional vibrations and geared systems dynamics.
This book addresses two fundamental issues of motor control for both humans and robots: kinematic redundancy and the posture/movement problem. It blends traditional robotic constrained-optimal approaches with neuroscientific and evidence-based principles, proposing a "Task-space Separation Principle," a novel scheme for planning both posture and movement in redundant manipulators. The proposed framework is first tested in simulation and then compared with experimental motor strategies displayed by humans during redundant pointing tasks. The book also shows how this model builds on and expands traditional formulations such as the Passive Motion Paradigm and the Equilibrium Point Theory. Lastly, breaking with the neuroscientific tradition of planar movements and linear(ized) kinematics, the theoretical formulation and experimental scenarios are set in the nonlinear space of 3D rotations which are essential for wrist motions, a somewhat neglected area despite its importance in daily tasks.
Dynamics of Civil Structures, Volume 2: Proceedings of the 36th IMAC, A Conference and Exposition on Structural Dynamics, 2018, the second volume of nine from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of the Dynamics of Civil Structures, including papers on: Modal Parameter Identification Dynamic Testing of Civil Structures Control of Human Induced Vibrations of Civil Structures Model Updating Damage Identification in Civil Infrastructure Bridge Dynamics Experimental Techniques for Civil Structures Hybrid Simulation of Civil Structures Vibration Control of Civil Structures System Identification of Civil Structures
The book provides readers with a snapshot of recent research and industrial trends in field of industrial acoustics and vibration. Each chapter, accepted after a rigorous peer-review process, reports on a selected, original piece of work presented and discussed at the Second International Conference on Acoustics and Vibration (ICAV2018), which was organized by the Tunisian Association of Industrial Acoustics and Vibration (ATAVI) and held March 19-21, in Hammamet, Tunisia. The contributions cover advances in both theory and practice in a variety of subfields, such as: smart materials and structures; fluid-structure interaction; structural acoustics as well as computational vibro-acoustics and numerical methods. Further topics include: engines control, noise identification, robust design, flow-induced vibration and many others. This book provides a valuable resource for both academics and professionals dealing with diverse issues in applied mechanics. By combining advanced theories with industrial issues, it is expected to facilitate communication and collaboration between different groups of researchers and technology users.
IFToMM conferences have a history of success due to the various advances achieved in the field of rotor dynamics over the past three decades. These meetings have since become a leading global event, bringing together specialists from industry and academia to promote the exchange of knowledge, ideas, and information on the latest developments in the dynamics of rotating machinery. The scope of the conference is broad, including e.g. active components and vibration control, balancing, bearings, condition monitoring, dynamic analysis and stability, wind turbines and generators, electromechanical interactions in rotor dynamics and turbochargers. The proceedings are divided into four volumes. This third volume covers the following main topics: dynamic analysis and stability; electromechanical interactions in rotordynamics; nonlinear phenomena in rotordynamics; rotordynamics of micro, nano and cryogenic machines; and fluid structure interactions in rotordynamics.
This book combines semi-physical simulation technology with an Internet of Things (IOT) application system based on novel mathematical methods such as the Fisher matrix, artificial neural networks, thermodynamic analysis, support vector machines, and image processing algorithms. The dynamic testing and semi-physical verification of the theory and application were conducted for typical IOT systems such as RFID systems, Internet of Vehicles systems, and two-dimensional barcode recognition systems. The findings presented are of great scientific significance and have wide application potential for solving bottlenecks in the development of RFID technology and IOT engineering. The book is a valuable resource for postgraduate students in fields such as computer science and technology, control science and engineering, and information science. Moreover, it is a useful reference resource for researchers in IOT and RFID-related industries, logistics practitioners, and system integrators.
This book reports on original theoretical and experimental findings related to a number of cutting-edge topics in mechanics and mechanical engineering, such as structure modelling and computation; design methodology and manufacturing processes; mechanical behaviour of materials; fluid mechanics and energy; and heat and mass transfer. It includes a selection of papers presented at the 4th Tunisian Congress on Mechanics, CoTuMe'2018, held in Hammamet, Tunisia, on October 13-15, 2018. Thanks to the good balance of theory and practical findings, it offers a timely snapshot for researchers and industrial communities alike, and a platform to facilitate communication and collaboration between the two groups.
This book presents a three-dimensional model of the complete unicycle-unicyclist system. A unicycle with a unicyclist on it represents a very complex system. It combines Mechanics, Biomechanics and Control Theory into the system, and is impressive in both its simplicity and improbability. Even more amazing is the fact that most unicyclists don't know that what they're doing is, according to science, impossible - just like bumblebees theoretically shouldn't be able to fly. This book is devoted to the problem of modeling and controlling a 3D dynamical system consisting of a single-wheeled vehicle, namely a unicycle and the cyclist (unicyclist) riding it. The equations of motion are derived with the aid of the rarely used Boltzmann-Hamel Equations in Matrix Form, which are based on quasi-velocities. The Matrix Form allows Hamel coefficients to be automatically generated, and eliminates all the difficulties associated with determining these quantities. The equations of motion are solved by means of Wolfram Mathematica. To more faithfully represent the unicyclist as part of the model, the model is extended according to the main principles of biomechanics. The impact of the pneumatic tire is investigated using the Pacejka Magic Formula model including experimental determination of the stiffness coefficient. The aim of control is to maintain the unicycle-unicyclist system in an unstable equilibrium around a given angular position. The control system, based on LQ Regulator, is applied in Wolfram Mathematica. Lastly, experimental validation, 3D motion capture using software OptiTrack - Motive:Body and high-speed cameras are employed to test the model's legitimacy. The description of the unicycle-unicyclist system dynamical model, simulation results, and experimental validation are all presented in detail.
An application-oriented approach to process control. The reference text systematically explains process identification, control and optimization, the three key steps needed to solve a multivariable control problem.Theory is discussed as far as it is needed to understand and solve the defined problem, while numerous examples written in MATLAB illustrate the problem-solving approach."
This book presents the most recent advances on the mechanics of soft and composite shells and their nonlinear vibrations and stability, including advanced problems of modeling human vessels (aorta) with fluid-structure interaction. It guides the reader into nonlinear modelling of shell structures in applications where advanced composite and complex biological materials must be described with great accuracy. To achieve this goal, the book presents nonlinear shell theories, nonlinear vibrations, buckling, composite and functionally graded materials, hyperelasticity, viscoelasticity, nonlinear damping, rubber and soft biological materials. Advanced nonlinear shell theories, not available in any other book, are fully derived in a simple notation and are ready to be implemented in numerical codes. The work features a blend of the most advanced theory and experimental results, and is a valuable resource for researchers, professionals and graduate students, especially those interested in mechanics, aeronautics, civil structures, materials, bioengineering and solid matter at different scales.
This monograph presents new insights into the perturbation theory of dynamical systems based on the Gromov-Hausdorff distance. In the first part, the authors introduce the notion of Gromov-Hausdorff distance between compact metric spaces, along with the corresponding distance for continuous maps, flows, and group actions on these spaces. They also focus on the stability of certain dynamical objects like shifts, global attractors, and inertial manifolds. Applications to dissipative PDEs, such as the reaction-diffusion and Chafee-Infante equations, are explored in the second part. This text will be of interest to graduates students and researchers working in the areas of topological dynamics and PDEs.
This book introduces some basic mathematical tools in reaction-diffusion models, with applications to spatial ecology and evolutionary biology. It is divided into four parts. The first part is an introduction to the maximum principle, the theory of principal eigenvalues for elliptic and periodic-parabolic equations and systems, and the theory of principal Floquet bundles. The second part concerns the applications in spatial ecology. We discuss the dynamics of a single species and two competing species, as well as some recent progress on N competing species in bounded domains. Some related results on stream populations and phytoplankton populations are also included. We also discuss the spreading properties of a single species in an unbounded spatial domain, as modeled by the Fisher-KPP equation. The third part concerns the applications in evolutionary biology. We describe the basic notions of adaptive dynamics, such as evolutionarily stable strategies and evolutionary branching points, in the context of a competition model of stream populations. We also discuss a class of selection-mutation models describing a population structured along a continuous phenotypical trait. The fourth part consists of several appendices, which present a self-contained treatment of some basic abstract theories in functional analysis and dynamical systems. Topics include the Krein-Rutman theorem for linear and nonlinear operators, as well as some elements of monotone dynamical systems and abstract competition systems. Most of the book is self-contained and it is aimed at graduate students and researchers who are interested in the theory and applications of reaction-diffusion equations.
Underwater Acoustic Modeling and Simulation (5th edition) examines the translation of our physical understanding of sound in the sea into mathematical models that can simulate acoustic propagation, noise, and reverberation in the ocean. These models are used in a variety of research and operational applications to predict and diagnose the performance of complex sonar systems operating in the undersea environment. This fifth edition addresses advances in the development and utilization of underwater acoustic models since 2013. The inventory of underwater acoustic models has increased by approximately 10 percent over this period, thus demonstrating a continued expansion of related research and development activities. Major new developments are described in newly created subsections of the existing chapters. This book is intended for those who have a fundamental understanding of underwater acoustics, but who are not yet familiar with the various aspects of modeling. The level of technical detail presented in this book is appropriate for a broad spectrum of practitioners and students in sonar technology, acoustical oceanography, marine engineering, naval operations analysis, systems engineering, and applied mathematics. Sufficient mathematical derivations are included to demonstrate model formulations, and guidelines are provided to assist in the selection and proper application of these models. Updated inventory of underwater acoustic models available for current research and development activities. Discussion of specific examples of each type of model to illustrate model formulations, assumptions, and algorithm efficiency. Instructions in the proper application of models and the correct interpretation of results to assess prediction uncertainties. Demonstration of how underwater acoustic models can serve as enabling tools for assessing noise impacts on the ocean soundscape. Inclusion of updated discussion and analytic questions in each chapter to help students assess their comprehension.
Appeals to the Student and the Seasoned Professional While the analysis of a civil-engineering structure typically seeks to quantify static effects (stresses and strains), there are some aspects that require considerations of vibration and dynamic behavior. Vibration Analysis and Structural Dynamics for Civil Engineers: Essentials and Group-Theoretic Formulations is relevant to instances that involve significant time-varying effects, including impact and sudden movement. It explains the basic theory to undergraduate and graduate students taking courses on vibration and dynamics, and also presents an original approach for the vibration analysis of symmetric systems, for both researchers and practicing engineers. Divided into two parts, it first covers the fundamentals of the vibration of engineering systems, and later addresses how symmetry affects vibration behavior. Part I treats the modeling of discrete single and multi-degree-of-freedom systems, as well as mathematical formulations for continuous systems, both analytical and numerical. It also features some worked examples and tutorial problems. Part II introduces the mathematical concepts of group theory and symmetry groups, and applies these to the vibration of a diverse range of problems in structural mechanics. It reveals the computational benefits of the group-theoretic approach, and sheds new insights on complex vibration phenomena. The book consists of 11 chapters with topics that include: The vibration of discrete systems or lumped parameter models The free and forced response of single degree-of-freedom systems The vibration of systems with multiple degrees of freedom The vibration of continuous systems (strings, rods and beams) The essentials of finite-element vibration modelling Symmetry considerations and an outline of group and representation theories Applications of group theory to the vibration of linear mechanical systems Applications of group theory to the vibration of structural grids and cable nets Group-theoretic finite-element and finite-difference formulations Vibration Analysis and Structural Dynamics for Civil Engineers: Essentials and Group-Theoretic Formulations acquaints students with the fundamentals of vibration theory, informs experienced structural practitioners on simple and effective techniques for vibration modelling, and provides researchers with new directions for the development of computational vibration procedures.
Continuous-system simulation is an increasingly important tool for optimizing the performance of real-world systems. The book presents an integrated treatment of continuous simulation with all the background and essential prerequisites in one setting. It features updated chapters and two new sections on Black Swan and the Stochastic Information Packet (SIP) and Stochastic Library Units with Relationships Preserved (SLURP) Standard. The new edition includes basic concepts, mathematical tools, and the common principles of various simulation models for different phenomena, as well as an abundance of case studies, real-world examples, homework problems, and equations to develop a practical understanding of concepts.
An important work presenting in one volume the application of viscoelastic damping materials to control vibration and noise of structures, machinery, and vehicles Focuses primarily on the application of passive as well as actively treated viscoelastic damping materials to control vibration and noise of structures, machinery, and vehicles. Emphasis is placed on presenting the basic principles and potential applications of passive and active vibration damping technologies. The presentation encompasses a mix between the associated physical fundamentals, governing theories and optimal design strategies of various configurations of vibration damping treatments. Utilization of the smart materials to augment the vibration damping of passive treatments is the common thread which is pursued, in depth, among all the chapters of the book. This book is divided into two parts, the first dealing with materials theory and the second dealing with the practical application to vibrations. It presents the basics of various damping effective treatments such as constrained layers, shunted piezoelectric treatments, electromagnetic and shape memory fibers. Classical aspects of viscoelastic materials models are also analyzed from the experimental characterization of the material coefficients as well as their modeling. New models such as Golla-Hughes-McTavish (GHM ) model, augmented temperature field (ATF) model, fractional derivatives (FD) models. Modal strain energy (MSE) models are also deeply analyzed. Part II of the book is devoted to the detailed descriptions of advanced damping treatments using all the fundamentals presented in Part I. Each chapter of the book ends with a number of problems that cover the different aspects of theoretical analysis, design, and applications of vibration damping technologies. The book has a large number of numerical examples to reinforce the understanding of the theories covered, providing the means for exercising the knowledge gained, and emphasizing the learning of strategies for the design and application of active and passive vibration damping systems. The examples are supported by a set of MATLAB software modules to enable the designers of vibration damping systems to extend the theories presented to various applications. - Written by an internationally recognized authority and pioneer, it summarizes and presents comprehensive coverage in one volume material that until now appears throughout a selection of references- Presents a mix of the associated physical fundamentals, governing theories and optimal design strategies of various configurations of vibration damping treatments, a comprehensive coverage not available elsewhere- With companion website including MATLAB software, solutions to all problems, and power point slides, the supporting tools enable hands-on experience of the analysis, design, optimization, and application to a wide range of situations |
![]() ![]() You may like...
Think, Learn, Succeed - Understanding…
Dr. Caroline Leaf, Peter Amua-Quarshie, …
Paperback
![]()
This Is Jesus Christ - An Interactive…
Edward Kenneth Watson
Hardcover
|