![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids > Dynamics & vibration
Topics in Modal Analysis & Testing, Volume 8: Proceedings of the 37th IMAC, A Conference and Exposition on Structural Dynamics, 2019, the eighth volume of eight from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Modal Analysis, including papers on: Analytical Methods Modal Applications Basics of Modal Analysis Experimental Techniques Multi Degree of Freedom Testing Boundary Conditions in Environmental Testing Operational Modal Analysis Modal Parameter Identification Novel Techniques
This thesis develops next-generation multi-degree-of-freedom gyroscopes and inertial measurement units (IMU) using micro-electromechanical-systems (MEMS) technology. It covers both a comprehensive study of the physics of resonator gyroscopes and novel micro/nano-fabrication solutions to key performance limits in MEMS resonator gyroscopes. Firstly, theoretical and experimental studies of physical phenomena including mode localization, nonlinear behavior, and energy dissipation provide new insights into challenges like quadrature errors and flicker noise in resonator gyroscope systems. Secondly, advanced designs and micro/nano-fabrication methods developed in this work demonstrate valuable applications to a wide range of MEMS/NEMS devices. In particular, the HARPSS+ process platform established in this thesis features a novel slanted nano-gap transducer, which enabled the first wafer-level-packaged single-chip IMU prototype with co-fabricated high-frequency resonant triaxial gyroscopes and high-bandwidth triaxial micro-gravity accelerometers. This prototype demonstrates performance amongst the highest to date, with unmatched robustness and potential for flexible substrate integration and ultra-low-power operation. This thesis shows a path toward future low-power IMU-based applications including wearable inertial sensors, health informatics, and personal inertial navigation.
This book systematically presents the theory, numerical implementation, field experiments and practical engineering applications of the 'Vehicle-Track Coupled Dynamics'. Representing a radical departure from classic vehicle system dynamics and track dynamics, the vehicle-track coupled dynamics theory considers the vehicle and track as one interactive and integrated system coupled through wheel-rail interaction. This new theory enables a more comprehensive and accurate solution to the train-track dynamic interaction problem which is a fundamental and important research topic in railway transportation system, especially for the rapidly developed high-speed and heavy-haul railways. It has been widely applied in practical railway engineering. Dr. Wanming Zhai is a Chair Professor of Railway Engineering at Southwest Jiaotong University, where he is also chairman of the Academic Committee and Director of the Train and Track Research Institute. He is a member of the Chinese Academy of Sciences and one of the leading scientists in railway system dynamics. Professor Zhai is Editor-in-Chief of both the International Journal of Rail Transportation, published by Taylor & Francis Group, and the Journal of Modern Transportation, published by Springer. In addition, he is a trustee of the International Association for Vehicle System Dynamics, Vice President of the Chinese Society of Theoretical and Applied Mechanics, and Vice President of the Chinese Society for Vibration Engineering.
This book comprises select proceedings of the National Conference on Control, Signal Processing, Energy and Power Systems (CSPES 2018). The book covers topics on both theoretical control systems and their applications across engineering domains such as automatic control, robotics, and adaptive controller design. It discusses several signal processing domains such as image, speech, biomedical signal processing and their applications in IOT, control, robotics, power and energy systems. The book emphasizes both conventional and non-conventional energy, environment, and green processes as related to energy and power systems engineering. The contents of this book will prove to be useful for students, researchers, academics, and professionals.
This book presents up-to-date research developments and novel methodologies to solve various stability and control problems of dynamic systems with time delays. First, it provides the new introduction of integral and summation inequalities for stability analysis of nominal time-delay systems in continuous and discrete time domain, and presents corresponding stability conditions for the nominal system and an applicable nonlinear system. Next, it investigates several control problems for dynamic systems with delays including H(infinity) control problem Event-triggered control problems; Dynamic output feedback control problems; Reliable sampled-data control problems. Finally, some application topics covering filtering, state estimation, and synchronization are considered. The book will be a valuable resource and guide for graduate students, scientists, and engineers in the system sciences and control communities.
This book describes the entire process of designing guitars, including the theory and guidelines for implementing it in practice. It discusses areas from acoustics and resonators to new tools and how they assist traditional construction techniques. The book begins by discussing the fundamentals of the sounds of a guitar, strings, and oscillating systems. It then moves on to resonators and acoustics within the guitar, explaining the analysis systems and evaluation methods, and comparing classic and modern techniques. Each area of the guitar is covered, from the soundboard and the back, to the process of closing the instrument. The book concludes with an analysis of historic and modern guitars. This book is of interest to luthiers wanting to advance their practice, guitar players wishing to learn more about their instruments, and academics in engineering and physics curious about the principles of acoustics when applied to musical instruments.
This volume collects the edited and reviewed contributions presented in the 8th iTi Conference on Turbulence, held in Bertinoro, Italy, in September 2018. In keeping with the spirit of the conference, the book was produced afterwards, so that the authors had the opportunity to incorporate comments and discussions raised during the event. The respective contributions, which address both fundamental and applied aspects of turbulence, have been structured according to the following main topics: I TheoryII Wall-bounded flowsIII Simulations and modellingIV ExperimentsV Miscellaneous topicsVI Wind energy
This book focuses on the latest applications of nonlinear approaches in engineering and addresses a range of scientific problems. Examples focus on issues in automotive technology, including automotive dynamics, control for electric and hybrid vehicles, and autodriver algorithm for autonomous vehicles. Also included are discussions on renewable energy plants, data modeling, driver-aid methods, and low-frequency vibration. Chapters are based on invited contributions from world-class experts who advance the future of engineering by discussing the development of more optimal, accurate, efficient, cost, and energy effective systems. This book is appropriate for researchers, students, and practising engineers who are interested in the applications of nonlinear approaches to solving engineering and science problems. Presents a broad range of practical topics and approaches; Explains approaches to better, safer, and cheaper systems; Emphasises automotive applications, physical meaning, and methodologies.
This volume contains the proceedings of the IUTAM Symposium on Model Order Reduction of Coupled System, held in Stuttgart, Germany, May 22-25, 2018. For the understanding and development of complex technical systems, such as the human body or mechatronic systems, an integrated, multiphysics and multidisciplinary view is essential. Many problems can be solved within one physical domain. For the simulation and optimization of the combined system, the different domains are connected with each other. Very often, the combination is only possible by using reduced order models such that the large-scale dynamical system is approximated with a system of much smaller dimension where the most dominant features of the large-scale system are retained as much as possible. The field of model order reduction (MOR) is interdisciplinary. Researchers from Engineering, Mathematics and Computer Science identify, explore and compare the potentials, challenges and limitations of recent and new advances.
This book gathers contributions presented at the 10th Workshop on Cyclostationary Systems and Their Applications, held in Grodek nad Dunajcem, Poland in February 2017. It includes twelve interesting papers covering current topics related to both cyclostationary and general non stationary processes. Moreover, this book, which covers both theoretical and practical issues, offers a practice-oriented guide to the analysis of data sets with non-stationary behavior and a bridge between basic and applied research on nonstationary processes. It provides students, researchers and professionals with a timely guide on cyclostationary systems, nonstationary processes and relevant engineering applications.
In this work, outstanding, recent developments in various disciplines, such as structural dynamics, multiphysic mechanics, computational mathematics, control theory, biomechanics, and computer science, are merged together in order to provide academicians and professionals with methods and tools for the virtual prototyping of complex mechanical systems. Each chapter of the work represents an important contribution to multibody dynamics, a discipline that plays a central role in the modelling, analysis, simulation and optimization of mechanical systems in a variety of fields and for a wide range of applications.
This book reports on the latest advances in the study of motion control in biomimetic swimming robots with high speed and high manoeuvrability. It presents state-of-the-art studies on various swimming robots including robotic fish, dolphins and jellyfish in a unified framework, and discusses the potential benefits of applying biomimetic underwater propulsion to autonomous underwater vehicle design, such as: speed, energy economy, enhanced manoeuvrability, and reduced detectability. Given its scope, the book will be of interest to researchers, engineers and graduate students in robotics and ocean engineering who wish to learn about the core principles, methods, algorithms, and applications of biomimetic underwater robots.
This book comprises select proceedings of the International Conference on Future Learning Aspects of Mechanical Engineering (FLAME 2018). The book discusses different topics of industrial and production engineering such as sustainable manufacturing systems, computer-aided engineering, rapid prototyping, manufacturing management and automation, metrology, manufacturing process optimization, casting, welding, machining, and machine tools. The contents of this book will be useful for researchers as well as professionals.
This book presents select proceedings of the International Conference on Future Learning Aspects of Mechanical Engineering (FLAME 2018). The book covers mechanical design areas such as computational mechanics, finite element modeling, computer aided designing, tribology, fracture mechanics, and vibration. The book brings together different aspects of engineering design, and will be useful for researchers and professionals working in this field.
This book proposes, for the first time, a basic formulation for structural control that takes into account the stochastic dynamics induced by engineering excitations in the nature of non-stationary and non-Gaussian processes. Further, it establishes the theory of and methods for stochastic optimal control of randomly-excited engineering structures in the context of probability density evolution methods, such as physically-based stochastic optimal (PSO) control. By logically integrating randomness into control gain, the book helps readers design elegant control systems, mitigate risks in civil engineering structures, and avoid the dilemmas posed by the methods predominantly applied in current practice, such as deterministic control and classical linear quadratic Gaussian (LQG) control associated with nominal white noises.
Model Validation and Uncertainty Quantification, Volume 3: Proceedings of the 37th IMAC, A Conference and Exposition on Structural Dynamics, 2019, the third volume of eight from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Model Validation and Uncertainty Quantification, including papers on: Inverse Problems and Uncertainty Quantification Controlling Uncertainty Validation of Models for Operating Environments Model Validation & Uncertainty Quantification: Decision Making Uncertainty Quantification in Structural Dynamics Uncertainty in Early Stage Design Computational and Uncertainty Quantification Tools
Dynamics of Coupled Structures, Volume 4: Proceedings of the 37th IMAC, A Conference and Exposition on Structural Dynamics, 2019, the fourth volume of eight from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of the Dynamics of Coupled Structures, including papers on: Methods for Dynamic Substructures Applications for Dynamic Substructures Interfaces & Substructuring Frequency Based Substructuring Transfer Path Analysis
This book introduces a stability and control methodology named AeroMech, capable of sizing the primary control effectors of fixed wing subsonic to hypersonic designs of conventional and unconventional configuration layout. Control power demands are harmonized with static-, dynamic-, and maneuver stability requirements, while taking the six-degree-of-freedom trim state into account. The stability and control analysis solves the static- and dynamic equations of motion combined with non-linear vortex lattice aerodynamics for analysis. The true complexity of addressing subsonic to hypersonic vehicle stability and control during the conceptual design phase is hidden in the objective to develop a generic (vehicle configuration independent) methodology concept. The inclusion of geometrically asymmetric aircraft layouts, in addition to the reasonably well-known symmetric aircraft types, contributes significantly to the overall technical complexity and level of abstraction. The first three chapters describe the preparatory work invested along with the research strategy devised, thereby placing strong emphasis on systematic and thorough knowledge utilization. The engineering-scientific method itself is derived throughout the second half of the book. This book offers a unique aerospace vehicle configuration independent (generic) methodology and mathematical algorithm. The approach satisfies the initial technical quest: How to develop a 'configuration stability & control' methodology module for an advanced multi-disciplinary aerospace vehicle design synthesis environment that permits consistent aerospace vehicle design evaluations?
Special Topics in Structural Dynamics & Experimental Techniques, Volume 5: Proceedings of the 37th IMAC, A Conference and Exposition on Structural Dynamics, 2019, the fifth volume of eight from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on: Analytical Methods Emerging Technologies for Structural Dynamics Engineering Extremes Experimental Techniques Finite Element Techniques General Topics
This book reviews the most common state-of-the art methods for substructuring and model reduction and presents a framework that encompasses most method, highlighting their similarities and differences. For example, popular methods such as Component Mode Synthesis, Hurty/Craig-Bampton, and the Rubin methods, which are popular within finite element software, are reviewed. Similarly, experimental-to-analytical substructuring methods such as impedance/frequency response based substructuring, modal substructuring and the transmission simulator method are presented. The overarching mathematical concepts are reviewed, as well as practical details needed to implement the methods. Various examples are presented to elucidate the methods, ranging from academic examples such as spring-mass systems, which serve to clarify the concepts, to real industrial case studies involving automotive and aerospace structures. The wealth of examples presented reveal both the potential and limitations of the methods.
This volume contains selected papers from the Second Quadrennial International Conference on Structural Integrity (ICONS-2018). The papers cover important topics related to structural integrity of critical installations, such as power plants, aircrafts, spacecrafts, defense and civilian components. The focus is on assuring safety of operations with high levels of reliability and structural integrity. This volume will be of interest to plant operators working with safety critical equipment, engineering solution providers, software professionals working on engineering analysis, as well as academics working in the area.
This book presents a first generation of artificial brains, using vision as sample application. An object recognition system is built, using neurons and synapses as exclusive building elements. The system contains a feature pyramid with 8 orientations and 5 resolution levels for 1000 objects and networks for binding of features into objects. This vision system can recognize objects robustly in the presence of changes in illumination, deformation, distance and pose (as long as object components remain visible). The neuro-synaptic network owes its functional power to the introduction of rapidly modifiable dynamic synapses. These give a network greater pattern recognition capabilities than are achievable with fixed connections. The spatio-temporal correlation structure of patterns is captured by a single synaptic differential equation in a universal way. The correlation can appear as synchronous neural firing, which signals the presence of a feature in a robust way, or binds features into objects. Although in this book we can present only a first generation artificial brain and believe many more generations will have to follow to reach the full power of the human brain, we nevertheless see a new era of computation on the horizon. There were times when computers, with their precision, reliability and blinding speed, were considered to be as superior to the wet matter of our brain as a jet plane is to a sparrow. These times seem to be over, given the fact that digital systems inspired by formal logic and controlled algorithmically - today's computers - are hitting a complexity crisis. A paradigm change is in the air: from the externally organised to the self-organised computer, of which the results described in this book may give an inkling.
Proceedings of the FISITA 2012 World Automotive Congress are selected from nearly 2,000 papers submitted to the 34th FISITA World Automotive Congress, which is held by Society of Automotive Engineers of China (SAE-China ) and the International Federation of Automotive Engineering Societies (FISITA). This proceedings focus on solutions for sustainable mobility in all areas of passenger car, truck and bus transportation. Volume 13: Noise, Vibration and Harshness (NVH) focuses on: *Chassis Vibration and Noise Control *Transmission Vibration and Noise Control *Engine Vibration and Noise Control *Body Vibration and Noise Control *Vehicle Vibration and Noise Control *Analysis and Evaluation of In-Car Vibration & Noise *Wind Noise Control Technology *Vibration and Noise Testing Technology Above all researchers, professional engineers and graduates in fields of automotive engineering, mechanical engineering and electronic engineering will benefit from this book. SAE-China is a national academic organization composed of enterprises and professionals who focus on research, design and education in the fields of automotive and related industries. FISITA is the umbrella organization for the national automotive societies in 37 countries around the world. It was founded in Paris in 1948 with the purpose of bringing engineers from around the world together in a spirit of cooperation to share ideas and advance the technological development of the automobile.
Complex Nonlinearity: Chaos, Phase Transitions, Topology Change and Path Integrals is a book about prediction & control of general nonlinear and chaotic dynamics of high-dimensional complex systems of various physical and non-physical nature and their underpinning geometro-topological change. The book starts with a textbook-like expose on nonlinear dynamics, attractors and chaos, both temporal and spatio-temporal, including modern techniques of chaos-control. Chapter 2 turns to the edge of chaos, in the form of phase transitions (equilibrium and non-equilibrium, oscillatory, fractal and noise-induced), as well as the related field of synergetics. While the natural stage for linear dynamics comprises of flat, Euclidean geometry (with the corresponding calculation tools from linear algebra and analysis), the natural stage for nonlinear dynamics is curved, Riemannian geometry (with the corresponding tools from nonlinear, tensor algebra and analysis). The extreme nonlinearity - chaos - corresponds to the topology change of this curved geometrical stage, usually called configuration manifold. Chapter 3 elaborates on geometry and topology change in relation with complex nonlinearity and chaos. Chapter 4 develops general nonlinear dynamics, continuous and discrete, deterministic and stochastic, in the unique form of path integrals and their action-amplitude formalism. This most natural framework for representing both phase transitions and topology change starts with Feynman's sum over histories, to be quickly generalized into the sum over geometries and topologies. The last Chapter puts all the previously developed techniques together and presents the unified form of complex nonlinearity. Here we have chaos, phase transitions, geometrical dynamics and topology change, all working together in the form of path integrals. The objective of this book is to provide a serious reader with a serious scientific tool that will enable them to actually perform a competitive research in modern complex nonlinearity. It includes a comprehensive bibliography on the subject and a detailed index. Target readership includes all researchers and students of complex nonlinear systems (in physics, mathematics, engineering, chemistry, biology, psychology, sociology, economics, medicine, etc.), working both in industry/clinics and academia.
This book presents selected papers from the International Conference of Aerospace and Mechanical Engineering 2019 (AeroMech 2019), held at the Universiti Sains Malaysia's School of Aerospace Engineering. Sharing new innovations and discoveries concerning the Fourth Industrial Revolution (4IR), with a focus on 3D printing, big data analytics, Internet of Things, advanced human-machine interfaces, smart sensors and location detection technologies, it will appeal to mechanical and aerospace engineers. |
You may like...
Reference for Modern Instrumentation…
R.N. Thurston, Allan D. Pierce
Hardcover
R3,460
Discovery Miles 34 600
Vibration of Functionally Graded Beams…
Snehashish Chakraverty, Karan Kumar Pradhan
Paperback
Proceedings of the 10th International…
Katia Lucchesi Cavalca, Hans Ingo Weber
Hardcover
R5,242
Discovery Miles 52 420
Models, Simulation, and Experimental…
Michel Fremond, Franco Maceri, …
Hardcover
R4,352
Discovery Miles 43 520
Progress in Turbulence VIII…
Ramis Oerlu, Alessandro Talamelli, …
Hardcover
R4,057
Discovery Miles 40 570
|