![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids > Dynamics & vibration
Engineering the Guitar: Theory and Practice uniquely describes the mechanics of the guitar for engineers and craftsmen alike. Complete with informative illustrations, this popular musical volume describes the underlying mechanical concepts behind the guitar, supported by theory and test. A detailed description of guitar electronics paired with an analysis of sound quality appeals to scientific audiences as well as musicians technically apt. Readers will gain an understanding of the technical behavior of the instrument with respect to structural and component dynamics, in addition to the informative treatment of analytical models. Hand made and mass produced techniques are also examined in a chapter devoted to manufacturing processes. Audiences interested in mechanics, acoustics, and instrument making will find Engineering the Guitar: Theory and Practice an informative and enjoyable read.
Space flight is a comprehensive and innovative part of technology. It encompasses many fields of technology. This monograph presents a cross section of the total field of expertise that is called space flight . It provides insight into the design, construction and analysis aspects of spacecraft. Spacecraft includes satellites as well as launch vehicles, with a distinction between manned or unmanned. The International Space Station (ISS), Russian MIR, the American shuttle and the European Spacelab are examples of manned space flight, whereas communication satellites for radio and television and meteorological satellites are examples of unmanned space flight. The Emphasis of this book is put on unmanned space flight, particularly on the construction of spacecraft rather than the construction of launch vehicles. The nature of the satellite is dependent on the task that is set for that satellite."
Compiling the expertise of nine pioneers of the field, Magnetic Bearings - Theory, Design, and Application to Rotating Machinery offers an encyclopedic study of this rapidly emerging field with a balanced blend of commercial and academic perspectives. Every element of the technology is examined in detail, beginning at the component level and proceeding through a thorough exposition of the design and performance of these systems. The book is organized in a logical fashion, starting with an overview of the technology and a survey of the range of applications. A background chapter then explains the central concepts of active magnetic bearings while avoiding a morass of technical details. From here, the reader continues to a meticulous, state-of-the-art exposition of the component technologies and the manner in which they are assembled to form the AMB/rotor system. These system models and performance objectives are then tied together through extensive discussions of control methods for both rigid and flexible rotors, including consideration of the problem of system dynamics identification. Supporting this, the issues of system reliability and fault management are discussed from several useful and complementary perspectives. At the end of the book, numerous special concepts and systems, including micro-scale bearings, self-bearing motors, and self-sensing bearings, are put forth as promising directions for new research and development. Newcomers to the field will find the material highly accessible while veteran practitioners will be impressed by the level of technical detail that emerges from a combination of sophisticated analysis and insights gleaned from many collective years of practical experience. An exhaustive, self-contained text on active magnetic bearing technology, this book should be a core reference for anyone seeking to understand or develop systems using magnetic bearings.
Books like their authors have their destinies. This book for the most part couldhavebeenwrittenearlier, butithappenedtobereleasedaslateasthe 21stcentury.Itisbasedonthenumerousfundamentalstudiesofmyteacher Kamil Sh. Khodzhaev. His disease prevented him from implementing his ideas in the form that he had been contemplating for years. It was me who tried to convey his concepts and ideas with the least possible distortions. This book contains a number of solutions worked out by Kamil Sh. Khodzhaev himself as well as problems solved by the authors jointly or separately. Kamil Sh. Khodzhaev founded St. Petersburg school of electromech- ics, with the focus on mechanics as a part, however distinctive, of general analytical mechanics, having been inspired by the desire of our common Teacher Anatoly I. Lurie "to set order" in this signi?cant branch of s- ence. Khodzhaev'sschoolhasmanyfollowers andtheirworkisanintegral part of the book. Some original ideas and studies of our colleagues are provided with footnotes in the corresponding sections while Chapter 6 dealing with the motion of the charged particle in electromagnetic ?eld was written in cooperation with another co-author Alexander G. Chirkov.
In this edited book various novel approaches to problems of modern civil engineering are demonstrated. Experts associated within the Lagrange Laboratory present recent research results in civil engineering dealing both with modelling and computational aspects. Many modern topics are covered, such as monumental dams, soil mechanics and geotechnics, granular media, contact and friction problems, damage and fracture, new structural materials, and vibration damping - presenting the state of the art of mechanical modelling and computational issues in civil engineering.
"Nonlinear Oscillations in Mechanical Engineering" explores the effects of nonlinearities encountered in applications in that field. Since the nonlinearities are caused, first of all, by contacts between different mechanical parts, the main part of this book is devoted to oscillations in mechanical systems with discontinuities caused by dry friction and collisions. Another important source of nonlinearity which is covered is that caused by rotating unbalanced parts common in various machines as well as variable inertias occurring in all kinds of crank mechanisms. This book is written for advanced undergraduate and postgraduate students, but it may be also helpful and interesting for both theoreticians and practitioners working in the area of mechanical engineering at universities, in research labs or institutes and especially in the R and D departments within industrial firms.
The 1960s were perhaps a decade of confusion, when scientists faced d- culties in dealing with imprecise information and complex dynamics. A new set theory and then an in?nite-valued logic of Lot? A. Zadeh were so c- fusing that they were called fuzzy set theory and fuzzy logic; a deterministic system found by E. N. Lorenz to have random behaviours was so unusual that it was lately named a chaotic system. Just like irrational and imaginary numbers, negative energy, anti-matter, etc., fuzzy logic and chaos were gr- ually and eventually accepted by many, if not all, scientists and engineers as fundamental concepts, theories, as well as technologies. In particular, fuzzy systems technology has achieved its maturity with widespread applications in many industrial, commercial, and technical ?elds, ranging from control, automation, and arti?cial intelligence to image/signal processing, patternrecognition, andelectroniccommerce.Chaos, ontheother hand, wasconsideredoneofthethreemonumentaldiscoveriesofthetwentieth century together with the theory of relativity and quantum mechanics. As a very special nonlinear dynamical phenomenon, chaos has reached its current outstanding status from being merely a scienti?c curiosity in the mid-1960s to an applicable technology in the late 1990s. Finding the intrinsic relation between fuzzy logic and chaos theory is certainlyofsigni?cantinterestandofpotentialimportance.Thepast20years have indeed witnessed some serious explorations of the interactions between fuzzylogicandchaostheory, leadingtosuchresearchtopicsasfuzzymodeling of chaotic systems using Takagi-Sugeno models, linguistic descriptions of chaotic systems, fuzzy control of chaos, and a combination of fuzzy control technology and chaos theory for various engineering pract
"Neural Network-Based State Estimation of Nonlinear Systems" presents efficient, easy to implement neural network schemes for state estimation, system identification, and fault detection and Isolation with mathematical proof of stability, experimental evaluation, and Robustness against unmolded dynamics, external disturbances, and measurement noises.
Parametric Resonance in Dynamical Systems discusses the phenomenon of parametric resonance and its occurrence in mechanical systems, vehicles, motorcycles, aircraft and marine craft, along micro-electro-mechanical systems. The contributors provides an introduction to the root causes of this phenomenon and its mathematical equivalent, the Mathieu-Hill equation. Also included is a discussion of how parametric resonance occurs on ships and offshore systems, and its frequency in mechanical and electrical systems. This volume is ideal for researchers and mechanical engineers working in application fields such as MEMS, maritime, aircraft and ground vehicle engineering.
A robot manipulator is a movable chain of links interconnected by joints. One end is fixed to the ground, and a hand or end effector that can move freely in space is attached at the other end. This book begins with an introduction to the subject of robot manipulators. Next, it describes in detail a forward and reverse analysis for serial robot arms. Most of the text focuses on closed form solution techniques applied to a broad range of manipulator geometries, from typical industrial robot designs (relatively simple geometries) to the most complicated case of seven general links serially connected by six revolute joints. A unique feature is its detailed analysis of 6R-P and 7R mechanisms. Case studies show how the techniques described in the book are used in real engineering applications. The book will be useful to both graduate students and engineers working in the field of robotics.
This book presents up-to-date knowledge of dynamic analysis and its applications in engineering world. It covers the relevant topics in analytical, numerical and experimental aspects. To facilitate the understanding of the topics by readers with various backgrounds, general principles are linked to their applications from different angles. Special interesting topics such as statistics of motions and dynamic loading, damping modeling and measurement, nonlinear dynamics, finite element analysis, computer systems for calculation efficiency, structural health monitoring and human body vibrations etc., are also presented. The target readers include industry professionals in civil, marine and mechanical engineering as well as researchers and students in this area.
Too often the Eartha (TM)s surface acted as a divide between seismologists and engineers. Now it is becoming clear that the building behaviour largely depends on the seismic input and the buildings on their turn act as seismic sources, in an intricate interplay that non-linear phenomena make even more complex. These phenomena are often the cause of observed damage enhancement during past earthquakes. While research may pursue complex models to fully understand soil dynamics under seismic loading, we need also simple models valid on average, whose results can be easily transferred to end users. Under the title a oeIncreasing Seismic Safety by Combining Engineering Technologies and Seismological Dataa, we grouped several topics to be discussed together by engineers and seismologists: (1) Can we use ambient noise building and soil characterisation to extract useful information for engineers? (2) How we can tell apart a frequency decrease due to distributed damage, concentrated damage, time- varying building and soil behaviour? (3) Which is the role of transients in ambient noise analysis? (4) Can we quantify the influence of existing buildings on ground-motion recordings? (5) To which extent soil-building resonance is a cause of damage enhancement? (6) How to couple soil and building non-linear behaviour? On most questions there is an unanimous answer, but in some cases different views are present and the disagreement is faithfully reported.
The subject of this book is model abstraction of dynamical systems. The p- mary goal of the work embodied in this book is to design a controller for the mobile robotic car using abstraction. Abstraction provides a means to rep- sent the dynamics of a system using a simpler model while retaining important characteristics of the original system. A second goal of this work is to study the propagation of uncertain initial conditions in the framework of abstraction. The summation of this work is presented in this book. It includes the following: * An overview of the history and current research in mobile robotic control design. * A mathematical review that provides the tools used in this research area. * The development of the robotic car model and both controllers used in the new control design. * A review of abstraction and an extension of these ideas into new system relationship characterizations called traceability and -traceability. * A framework for designing controllers based on abstraction. * An open-loop control design with simulation results. * An investigation of system abstraction with uncertain initial conditions.
When you listen to music at home, you would like to have an acoustic impression close to being in the concert hall. This is achieved by an advanced two-loudspeaker technique and electronic handling of the signals. The way to head-related sound reproduction and reception to get the original impression is explained in this comprehensive book on the outer influence of hearing and how to achieve perfect stereo effects. The book also introduces a theory of drift thresholds.
Whole Body Vibrations: Physical and Biological Effects on the Human Body allows an understanding about the qualities and disadvantages of vibration exposure on the human body with a biomechanical and medical perspective. It offers a comprehensive range of principles, methods, techniques and tools to provide the reader with a clear knowledge of the impact of vibration on human tissues and physiological processes. The text considers physical, mechanical and biomechanical aspects and it is illustrated by key application domains such as sports and medicine. Consisting of 11 chapters in total, the first three chapters provide useful tools for measuring, generating, simulating and processing vibration signals. The following seven chapters are applications in different fields of expertise, from performance to health, with localized or global effects. Since unfortunately there are undesirable effects from the exposure to mechanical vibrations, a final chapter is dedicated to this issue. Engineers, researchers and students from biomedical engineering and health sciences, as well as industrial professionals can profit from this compendium of knowledge about mechanical vibration applied to the human body. Provides biomechanical and medical perspectives to understanding the qualities and disadvantages of vibration exposure on the human body Offers a range of principles, methods, techniques, and tools to evaluate the impact of vibration on human tissues and physiological processes Explores mechanical vibration techniques used to improve human performance Discusses the strong association between health and human well-being Explores physical, mechanical, and biomechanical aspects of vibration exposure in domains such as sports and medicine
Arun K. Banerjee is one of the foremost experts in the world on the subject of flexible multibody dynamics. This book describes how to build mathermatical models of multibody systems with elastic components. Examples of such systems include the human body itself, construction cranes, cares with trailers, helicopers, spacecraft deploying antennas, tethered satellites, and underwater maneuvering vehicles. This book provides methods of analysis of complex mechanical systems that can be simulated in less computer time than other methods. It equips the reader with knowledge of algorithms that provide accurate results in reduced simulation time.
Thisvolume contains thecollection of papers from the second workshop on Expe- mental Acoustic Inversion Techniques for Exploration of theShallow Water Environment. Theworkshopthemefollowedtheoriginalconceptofthe rstworkshop, heldinCarvoeiro, Portugal, in 1999, i.e., to focus on experiments and experimental techniques for acoustic sensing in the shallow ocean. More than forty leading international scientists were invited to meet in the picturesque town of St. Angelo on the island of Ischia, in June 2004, to discuss progress in the application of new experimental techniques for exploration and assessment of shallowwater environments. Acoustic techniques provide the most effective means for remote sensing of ocean and sea oor processes, and for probing the structure beneath the sea oor. No other energy propagates as ef ciently in the ocean: radio waves and visible light are severely limited in range because the ocean is a highly conductive medium. However, sound from bre- ing waves and coastal shipping can be heard throughout the ocean, and marine mammals communicate acoustically over basin scale distances.
This book contains an edited versIOn of lectures presented at the NATO ADVANCED STUDY INSTITUTE on VIRTUAL NONLINEAR MUL TIBODY SYSTEMS which was held in Prague, Czech Republic, from 23 June to 3 July 2002. It was organized by the Department of Mechanics, Faculty of Mechanical Engineering, Czech Technical University in Prague, in cooperation with the Institute B of Mechanics, University of Stuttgart, Germany. The ADVANCED STUDY INSTITUTE addressed the state of the art in multibody dynamics placing special emphasis on nonlinear systems, virtual reality, and control design as required in mechatronics and its corresponding applications. Eighty-six participants from twenty-two countries representing academia, industry, government and research institutions attended the meeting. The high qualification of the participants contributed greatly to the success of the ADVANCED STUDY INSTITUTE in that it promoted the exchange of experience between leading scientists and young scholars, and encouraged discussions to generate new ideas and to define directions of research and future developments. The full program of the ADVANCED STUDY INSTITUTE included also contributed presentations made by participants where different topics were explored, among them: Such topics include: nonholonomic systems; flexible multibody systems; contact, impact and collision; numerical methods of differential-algebraical equations; simulation approaches; virtual modelling; mechatronic design; control; biomechanics; space structures and vehicle dynamics. These presentations have been reviewed and a selection will be published in this volume, and in special issues of the journals Multibody System Dynamics and Mechanics of Structures and Machines.
This monograph summarizes the recent achievements made in the field of iterative learning control. The book is self-contained in theoretical analysis and can be used as a reference or textbook for a graduate level course as well as for self-study. It opens a new avenue towards a new paradigm in deterministic learning control theory accompanied by detailed examples.
Structural vibrations have become the critical factor limiting the performance of many engineering systems, typical amplitudes ranging from meters to a few nanometers. Many acoustic nuisances in transportation systems and residential and office buildings are also related to structural vibrations. The active control of such vibrations involves nine orders of magnitude of vibration amplitude, which exerts a profound influence on the technology. Active vibration control is highly multidisciplinary, involving structural vibration, acoustics, signal processing, materials science, and actuator and sensor technology. Chapters 1-3 of this book provide a state-of-the-art introduction to active vibration control, active sound control, and active vibroacoustic control, respectively. Chapter 4 discusses actuator/sensor placement, Chapter 5 deals with robust control of vibrating structures, Chapter 6 discusses finite element modelling of piezoelectric continua and Chapter 7 addresses the latest trends in piezoelectric multiple-degree-of-freedom actuators/sensors. Chapters 8-12 deal with example applications, including semi-active joints, active isolation and health monitoring. Chapter 13 addresses MEMS technology, while Chapter 14 discusses the design of power amplifiers for piezoelectric actuators.
The aim of the present book is to present theoretical nonlinear aco- tics with equal stress on physical and mathematical foundations. We have attempted explicit and detailed accounting for the physical p- nomena treated in the book, as well as their modelling, and the f- mulation and solution of the mathematical models. The nonlinear acoustic phenomena described in the book are chosen to give phy- cally interesting illustrations of the mathematical theory. As active researchers in the mathematical theory of nonlinear acoustics we have found that there is a need for a coherent account of this theory from a unified point of view, covering both the phenomena studied and mathematical techniques developed in the last few decades. The most ambitious existing book on the subject of theoretical nonlinear acoustics is "Theoretical Foundations of Nonlinear Aco- tics" by O. V. Rudenko and S. I. Soluyan (Plenum, New York, 1977). This book contains a variety of applications mainly described by Bu- ers' equation or its generalizations. Still adhering to the subject - scribed in the title of the book of Rudenko and Soluyan, we attempt to include applications and techniques developed after the appearance of, or not included in, this book. Examples of such applications are resonators, shockwaves from supersonic projectiles and travelling of multifrequency waves. Examples of such techniques are derivation of exact solutions of Burgers' equation, travelling wave solutions of Bu- ers' equation in non-planar geometries and analytical techniques for the nonlinear acoustic beam (KZK) equation.
This book contains a selection of the papers presented at the 3rd NCN Workshop which was focused on "Dynamics, Bifurcations and Control". The peer-reviewed papers describe a number of ways how dynamical systems techniques can be applied for analysis and design problems in control with topics ranging from bifurcation control via stability and stabilizaton to the global dynamical behaviour of control systems. The book gives an overview of the current status of the field.
Most of the existing strong motion instrumentation on civil engineering structures is installed and operated as federal, state, university, industry or private applications, in many cases operated as a closed system. This hampers co-operation and data exchange, hampering the acquisition of strong motion and structural data, sometimes even within a single country. There is a powerful need to inform engineers of existing strong motion data and to improve the accessibility of data worldwide. This book will play a role in fulfilling such a need by disseminating state-of-the art information, technology and developments in the strong motion instrumentation of civil engineering structures. The subject has direct implications for the earthquake response of structures, improvements in design for earthquake resistance, and hazard mitigation. Readership: Researchers in earthquake engineering, engineers designing earthquake resistant structures, and producers of strong motion recording equipment.
This book discusses statistical applications of wavelet theory for use in signal and image processing. The emphasis is on smoothing by wavelet thresholding and extended methods. Wavelet thresholding is an example of non-linear and non-parametric smoothing. The first part discusses theoretical and practical issues concerned with minimum risk thresholding and fast threshold estimation, using generalized cross validation. The extensions in later chapters consider possibilities to exploit three key properties of wavelets in statistics: sparsity, multiresolution, and locality. The author discusses original contributions to problems of correlated noise, scale dependent processing, Bayesian algorithms with geometrical priors (Markov random fields), non-equispaced data, and many other extensions. The point of view lies on the bridge between statistics, signal and image processing, and approximation theory, and the book is accessible for researchers from all of these fields. Most of the material has in mind applications in signal or image processing, and signals and images are used extensively in the illustrations. Nevertheless, the algorithms are quite general in the sense that they could also serve in other regression problems. The book also pays attention to fast algorithms, and Matlab code reproducing many of the illustrations is available for free. Maarten Jansen received a Ph.D. in applied mathematics from the Katholieke Universiteit Leuven, Belgium, in 2000 and currently he is a postdoctoral fellow with the Belgian Foundation for Scientific Research (FWO). He has been a visiting researcher at several institutes, including Stanford University, Bristol University, and Rice University.
Modal analysis is one of the most powerful tools available to the engineer for the dynamic analysis of structures. Development has been rapid and spans the identification and evaluation of vibration phenomena, the validation, correction and updating of analytical models and the assessment of structural integrity. The texts assembled here form a coheren t work. After a first chapter on the fundamentals of modal analysis, the reader is introduced to signal processing and the basic rules of exchange and analysis of dynamic information. The derivation of theoretical models for modal analysis is then addressed, followed by three chapters on the different approaches to the derivation of models based in the identification of experimental data: time domain, frequency domain and pseudo-testing. This leads to the discussion of updating analytical models and to model quality assessment techniques. Further topics treated include damage detection and evaluation, structural modification, damping modelling, and the normalisation of complex modes. Less well-known topics are also included: active control of structures, acoustic modal analysis and neural networks for modal analysis, advanced optimization methods of model updating, modal analysis for rotating machinery, and nonlinearity in modal analysis. |
![]() ![]() You may like...
Reference for Modern Instrumentation…
R.N. Thurston, Allan D. Pierce
Hardcover
R3,583
Discovery Miles 35 830
Design for the Unexpected - From Holonic…
Paul Valckenaers, Hendrik Van Brussel
Paperback
R2,908
Discovery Miles 29 080
Vibration Engineering and Technology of…
Jose-Manoel Balthazar
Hardcover
R5,785
Discovery Miles 57 850
Model Reduction of Complex Dynamical…
Peter Benner, Tobias Breiten, …
Hardcover
R3,821
Discovery Miles 38 210
|