![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids > Dynamics & vibration
Rotordynamics of automotive turbochargers is dealt with in this book encompassing the widely working field of small turbomachines under real operating conditions at the very high rotor speeds up to 300000 rpm. The broadly interdisciplinary field of turbocharger rotordynamics involves 1) Thermodynamics and Turbo-Matching of Turbochargers 2) Dynamics of Turbomachinery 3) Stability Analysis of Linear Rotordynamics with the Eigenvalue Theory 4) Stability Analysis of Nonlinear Rotordynamics with the Bifurcation Theory 5) Bearing Dynamics of the Oil Film using the Two-Phase Reynolds Equation 6) Computation of Nonlinear Responses of a Turbocharger Rotor 7) Aero and Vibroacoustics of Turbochargers 8) Shop and Trim Balancing at Two Planes of the Rotor 9) Tribology of the Bearing Surface Roughness 10) Design of Turbocharger Platforms using the Similarity Laws The rotor response of an automotive turbocharger at high rotor speeds is studied analytically, computationally, and experimentally. Due to the nonlinear characteristics of the oil-film bearings, some nonlinear responses of the rotor besides the harmonic response 1X, such as oil whirl, oil whip, and modulated frequencies occur in Waterfall diagram. Additionally, the influences of the surface roughness and oil characteristics on the rotor behavior, friction, and wear are discussed. This book is written by an industrial R&D expert with many years of experience in the automotive and turbocharger industries. The all-in-one book of turbochargers is intended for scientific and engineering researchers, practitioners working in the rotordynamics field of automotive turbochargers, and graduate students in applied physics and mechanical engineering.
This book contains selected chapters on recent research in topology. It bridges the gap between recent trends of topological theories and their applications in areas like social sciences, natural sciences, soft computing, economics, theoretical chemistry, cryptography, pattern recognitions and granular computing. There are 14 chapters, including two chapters on mathematical economics from the perspective of topology. The book discusses topics on function spaces, relator space, preorder, quasi-uniformities, bitopological dynamical systems, b-metric spaces and related fixed point theory. This book is useful to researchers, experts and scientists in studying the cutting-edge research in topology and related areas and helps them applying topology in solving real-life problems the society and science are facing these days..Â
Owing to the increased accuracy requirements in fields such as astrometry and geodesy the general theory of relativity must be taken into account for any mission requiring highly accurate orbit information and for practically all observation and measurement techniques. This book highlights the confluence of Applied Mathematics, Physics and Space Science as seen from Einstein's general theory of relativity and aims to bridge the gap between theoretical and applied domains. The book investigates three distinct areas of general relativity: Exact solutions of the Einstein field equations of gravitation. Dynamics of near-Earth objects and solar system bodies. Relativistic orbitography. This book is an updated and expanded version of the author's PhD thesis which was awarded the International Astronomical Union PhD prize in Division A: Fundamental Astronomy. Included is a new introduction aimed at graduate students of General Relativity and extended discussions and results on topics in post-Newtonian dynamics and general relativistic spacecraft propagation.
This volume gathers the latest advances, innovations and applications in the field of condition monitoring, plant maintenance and reliability, as presented by leading international researchers and engineers at the 5th International Conference on Maintenance Engineering and the 2020 Annual Conference of the Centre for Efficiency and Performance Engineering Network (IncoME-V & CEPE Net-2020), held in Zhuhai, China on October 23-25, 2020. Topics include vibro-acoustics monitoring, condition-based maintenance, sensing and instrumentation, machine health monitoring, maintenance auditing and organization, non-destructive testing, reliability, asset management, condition monitoring, life-cycle cost optimisation, prognostics and health management, maintenance performance measurement, manufacturing process monitoring, and robot-based monitoring and diagnostics. The contributions, which were selected through a rigorous international peer-review process, share exciting ideas that will spur novel research directions and foster new multidisciplinary collaborations.
This monograph provides a comprehensive exploration of new tools for modelling, analysis, and control of networked dynamical systems. Expanding on the authors' previous work, this volume highlights how local exchange of information and cooperation among neighboring agents can lead to emergent global behaviors in a given networked dynamical system. Divided into four sections, the first part of the book begins with some preliminaries and the general networked dynamical model that is used throughout the rest of the book. The second part focuses on synchronization of networked dynamical systems, synchronization with non-expansive dynamics, periodic solutions of networked dynamical systems, and modulus consensus of cooperative-antagonistic networks. In the third section, the authors solve control problems with input constraint, large delays, and heterogeneous dynamics. The final section of the book is devoted to applications, studying control problems of spacecraft formation flying, multi-robot rendezvous, and energy resource coordination of power networks. Modelling, Analysis, and Control of Networked Dynamical Systems will appeal to researchers and graduate students interested in control theory and its applications, particularly those working in networked control systems, multi-agent systems, and cyber-physical systems. This volume can also be used in advanced undergraduate and graduate courses on networked control systems and multi-agent systems.
This contributed volume presents some of the latest research related to model order reduction of complex dynamical systems with a focus on time-dependent problems. Chapters are written by leading researchers and users of model order reduction techniques and are based on presentations given at the 2019 edition of the workshop series Model Reduction of Complex Dynamical Systems - MODRED, held at the University of Graz in Austria. The topics considered can be divided into five categories: system-theoretic methods, such as balanced truncation, Hankel norm approximation, and reduced-basis methods; data-driven methods, including Loewner matrix and pencil-based approaches, dynamic mode decomposition, and kernel-based methods; surrogate modeling for design and optimization, with special emphasis on control and data assimilation; model reduction methods in applications, such as control and network systems, computational electromagnetics, structural mechanics, and fluid dynamics; and model order reduction software packages and benchmarks. This volume will be an ideal resource for graduate students and researchers in all areas of model reduction, as well as those working in applied mathematics and theoretical informatics.
This volume gathers the latest advances, innovations and applications in the field of vibration and technology of machinery, as presented by leading international researchers and engineers at the XV International Conference on Vibration Engineering and Technology of Machinery (VETOMAC), held in Curitiba, Brazil on November 10-15, 2019. Topics include concepts and methods in dynamics, dynamics of mechanical and structural systems, dynamics and control, condition monitoring, machinery and structural dynamics, rotor dynamics, experimental techniques, finite element model updating, industrial case studies, vibration control and energy harvesting, and MEMS. The contributions, which were selected through a rigorous international peer-review process, share exciting ideas that will spur novel research directions and foster new multidisciplinary collaborations.
This book reports on the 13th International Workshop on Railway Noise (IWRN13), held on September 16-20, 2019, in Ghent, Belgium. It gathers original peer-reviewed papers describing the latest developments in railway noise and vibration, as well as state-of-the-art reviews written by authoritative experts in the field. The different papers cover a broad range of railway noise and vibration topics, such as rolling noise, wheel squeal, noise perception, prediction methods, measurements and monitoring, and vehicle interior noise. Further topics include rail roughness, rail corrugation and grinding, high-speed rail and aerodynamic noise, structure-borne noise, ground-borne noise and vibration, and resilient track forms. Policy, criteria and regulation are also discussed. Offering extensive and timely information to both scientists and engineers, this book will help them in their daily efforts to identify, understand and solve problems related to railway noise and vibration, and to achieve the ultimate goal of reducing the environmental impact of railway systems.
This volume gathers the latest advances, innovations and applications in the field of cable robots, as presented by leading international researchers and engineers at the 5th International Conference on Cable-Driven Parallel Robots (CableCon 2021), held as virtual event on July 7-9, 2021. It covers the theory and applications of cable-driven parallel robots, including their classification, kinematics and singularity analysis, workspace, statics and dynamics, cable modeling and technologies, control and calibration, design methodologies, hardware development, experimental evaluation and prototypes, as well as application reports and new application concepts. The contributions, which were selected through a rigorous international peer-review process, share exciting ideas that will spur novel research directions and foster new multidisciplinary collaborations.
An ideal - and affordable - text for engineers and maintenance professionals with an interest in vibration monitoring. This title does not attempt to baffle with the technology, but introduces it at an understandable level, touching on the basic theory and concepts, available equipment and practical issues relevant to the engineer as well as highlighting several case studies with which the reader can relate. Other books in this series focus on corrosion, wear debris analysis, thermography, noise, ultrasonics and acoustic emission, level, leakage and flow, oil analysis, load monitoring and a superb Concise Encyclopaedia that includes introductory notes on all of the above techiques as well as others.
This book is about algebraic and differential methods, as well as fractional calculus, applied to diagnose and reject faults in nonlinear systems, which are of integer or fractional order. This represents an extension of a very important and widely studied problem in control theory, namely fault diagnosis and rejection (using differential algebraic approaches), to systems presenting fractional dynamics, i.e. systems whose dynamics are represented by derivatives and integrals of non-integer order. The authors offer a thorough overview devoted to fault diagnosis and fault-tolerant control applied to fractional-order and integer-order dynamical systems, and they introduce new methodologies for control and observation described by fractional and integer models, together with successful simulations and real-time applications. The basic concepts and tools of mathematics required to understand the methodologies proposed are all clearly introduced and explained. Consequently, the book is useful as supplementary reading in courses of applied mathematics and nonlinear control theory. This book is meant for engineers, mathematicians, physicists and, in general, to researchers and postgraduate students in diverse areas who have a minimum knowledge of calculus. It also contains advanced topics for researchers and professionals interested in the area of states and faults estimation.
This textbook serves as an introduction to nonlinear dynamics and fractals for physiological modeling. Examples and demonstrations from current research in cardiopulmonary engineering and neuro-systems engineering are provided, as well as lab and computer exercises that encourage readers to apply the course material. This is an ideal textbook for graduate students in biomedical engineering departments, researchers who analyze physiological data, and researchers interested in physiological modeling.
This book focuses on the theory and design methods for guidance, navigation, and control (GNC) in the context of spacecraft rendezvous and docking (RVD). The position and attitude dynamics and kinematics equations for RVD are presented systematically in accordance with several different coordinate systems, including elliptical orbital frame, and recommendations are supplied on which of these equations to use in different phases of RVD. The book subsequently explains the basic principles and relative navigation algorithms of RVD sensors such as GNSS, radar, and camera-type RVD sensors. It also provides guidance algorithms and schemes for different phases of RVD, including the latest research advances in rapid RVD. In turn, the book presents a detailed introduction to intelligent adaptive control and proposes corresponding theoretical approaches to thruster configuration and control allocation for RVD. Emphasis is placed on the design method of active and passive trajectory protection in different phases of RVD, and on the safety design of the RVD mission as a whole. For purposes of verification, the Shenzhou spacecraft's in-orbit flight mission is introduced as well. All issues addressed are described and explained from basic principles to detailed engineering methods and examples, providing aerospace engineers and students both a basic understanding of, and numerous practical engineering methods for, GNC system design in RVD.
This book evaluates the seismic performance of concrete gravity dams, considering the effects of strong motion duration, mainshock-aftershock seismic sequence, and near-fault ground motion. It employs both the extended finite element method (XFEM) and concrete damaged plasticity (CDP) models to characterize the mechanical behavior of concrete gravity dams under strong ground motions, including the dam-reservoir-foundation interaction. In addition, it discusses the effects of the initial crack, earthquake direction, and cross-stream seismic excitation on the nonlinear dynamic response to strong ground motions, and on the damage-cracking risk of concrete gravity dams. This book provides a theoretical basis for the seismic performance evaluation of high dams, and can also be used as a reference resource for researchers and graduate students engaged in the seismic design of high dams.
This book presents a systematic introduction to particle damping technologies, which can be used to effectively mitigate seismic-induced and wind-induced vibration in various structures. Further, it offers comprehensive information on the latest research advances, e.g. a refined simulation model based on the discrete element method and a simplified simulation model based on equivalent principles. It then intensively studies the vibration attenuation effects of particle dampers subjected to different dynamic loads; in this context, the book proposes a new damping mechanism and "global'' measures that can be used to evaluate damping performance. Moreover, the book uses the shaking table test and wind tunnel test to verify the proposed simulation methods, and their satisfactory damping performance is confirmed. To facilitate the practical engineering application of this technology, optimization design guidelines for particle impact dampers are also provided. In closing, the book offers a preliminary exploration of semi-active particle damping technology, which holds great potential for extension to other applications in which the primary system is subjected to non-stationary excitations.
This book intends to introduce some recent results on passivity of complex dynamical networks with single weight and multiple weights. The book collects novel research ideas and some definitions in complex dynamical networks, such as passivity, output strict passivity, input strict passivity, finite-time passivity, and multiple weights. Furthermore, the research results previously published in many flagship journals are methodically edited and presented in a unified form. The book is likely to be of interest to university researchers and graduate students in Engineering and Mathematics who wish to study the passivity of complex dynamical networks.
This book is ideal for teaching students in engineering or physics the skills necessary to analyze motions of complex mechanical systems such as spacecraft, robotic manipulators, and articulated scientific instruments. Kane's method, which emerged recently, reduces the labor needed to derive equations of motion and leads to equations that are simpler and more readily solved by computer, in comparison to earlier, classical approaches. Moreover, the method is highly systematic and thus easy to teach. This book is a revision of Dynamics: Theory and Applications (1985), by T. R. Kane and D. A. Levinson, and presents the method for forming equations of motion by constructing generalized active forces and generalized inertia forces. Important additional topics include approaches for dealing with finite rotation, an updated treatment of constraint forces and constraint torques, an extension of Kane's method to deal with a broader class of nonholonomic constraint equations, and other recent advances.
This book provides a comprehensive review of fundamental issues in the dynamical modeling and vibration control design for several flexible mechanical systems, such as flexible satellites, flexible aerial refueling hoses, and flexible three-dimensional manipulators. Offering an authoritative reference guide to the dynamics and control of flexible mechanical systems, it equips readers to solve a host of problems concerning these systems. It provides not only a complete overview of flexible systems, but also a better understanding of the technical levels involved. The book is divided into ten chapters: Chapters 1 and 2 lay the foundations, while the remaining chapters explore several independent yet related topics in detail. The book's final chapter presents conclusions and recommendations for future research. Given its scope, the book is intended for researchers, graduate students, and engineers whose work involves control systems, flexible mechanical systems, and related areas.
This book gathers contributions from the 15th ICOLD Benchmark Workshop on Numerical Analysis of Dams. The workshop provided an opportunity for engineers, researchers and operators to present and exchange their experiences and the latest advances in numerical modelling in the context of the design, performance and monitoring of dams. Covering various aspects of computer analysis tools and safety assessment criteria, and their development over recent decades, the book is a valuable reference resource for those in the engineering community involved in the safety, planning, design, construction, operation and maintenance of dams.
This book introduces the theory of structural dynamics, with focus on civil engineering structures. It presents modern methods of analysis and techniques adaptable to computer programming clearly and easily. The book is ideal as a text for advanced undergraduates or graduate students taking a first course in structural dynamics. It is arranged in such a way that it can be used for a one- or two-semester course, or span the undergraduate and graduate levels. In addition, this book serves the practicing engineer as a primary reference. This book is organized by the type of structural modeling. The author simplifies the subject by presenting a single degree-of-freedom system in the first chapters and then moves to systems with many degrees-of-freedom in the following chapters. Many worked examples/problems are presented to explain the text, and a few computer programs are presented to help better understand the concepts. The book is useful to the research scholars and professional engineers, besides senior undergraduate and postgraduate students.
This book gathers contributions by researchers from several countries on all major areas of robotic research, development and innovation, as well as new applications and current trends. The topics covered include: novel designs and applications of robotic systems, intelligent cooperating and service robots, advanced robot control, human-robot interfaces, robot vision systems, mobile robots, humanoid and walking robots, bio-inspired and swarm robotic systems, aerial, underwater and spatial robots, robots for ambient assisted living, medical robots and bionic prostheses, cognitive robots, cloud robotics, ethical and social issues in robotics, etc. Given its scope, the book offers a source of information and inspiration for researchers seeking to improve their work and gather new ideas for future developments. The contents reflect the outcomes of the activities of RAAD (International Conference on Robotics in Alpe-Adria-Danube Region) in 2020.
This book reports on an original approach to problems of loci. It shows how the theory of mechanisms can be used to address the locus problem. It describes the study of different loci, with an emphasis on those of triangle and quadrilateral, but not limited to them. Thanks to a number of original drawings, the book helps to visualize different type of loci, which can be treated as curves, and shows how to create new ones, including some aesthetic ones, by changing some parameters of the equivalent mechanisms. Further, the book includes a theoretical discussion on the synthesis of mechanisms, giving some important insights into the correlation between the generation of trajectories by mechanisms and the synthesis of those mechanisms when the trajectory is given, and presenting approximate solutions to this problem. Based on the authors' many years of research and on their extensive knowledge concerning the theory of mechanisms, and bridging between geometry and mechanics, this book offers a unique guide to mechanical engineers and engineering designers, mathematicians, as well as industrial and graphic designers, and students in the above-mentioned fields alike.
This book discusses systems of damage detection and structural health monitoring in mechanical, civil, and aerospace structures. It utilizes principles of fuzzy logic, probability theory, and signal processing to develop systems and approaches that are robust in the presence of both noise in the data and variations in properties of materials which are intrinsic to the process of mass production. This volume will be useful to graduate students, researchers, and engineers working in this area, especially those looking to understand and address model uncertainty in their algorithms.
This book presents the proceedings of the 46th National Symposium on Acoustics (NSA 2017). The main goal of this symposium is to discuss key opportunities and challenges in acoustics, especially as applied to engineering problems. The book covers topics ranging from hydro-acoustics, environmental acoustics, bio-acoustics to musical acoustics, electro-acoustics and sound perception. The contents of this volume will prove useful to researchers and practicing engineers working on acoustics problems. |
![]() ![]() You may like...
Iterative Learning Control for Flexible…
Tingting Meng, Wei He
Hardcover
R4,068
Discovery Miles 40 680
Theory of Oscillations - Structural…
Sergey Viktorovich Eliseev, Andrey Vladimirovich Eliseev
Hardcover
R4,435
Discovery Miles 44 350
Progress in Turbulence VIII…
Ramis Oerlu, Alessandro Talamelli, …
Hardcover
R4,398
Discovery Miles 43 980
Advances in Structural Engineering…
K. V. L. Subramaniam, Mohd Ataullah Khan
Hardcover
R5,596
Discovery Miles 55 960
Density Evolution Under Delayed Dynamics…
Jerome Losson, Michael C. Mackey, …
Hardcover
R2,873
Discovery Miles 28 730
Multibody Mechatronic Systems - Papers…
Martin Pucheta, Alberto Cardona, …
Hardcover
R7,106
Discovery Miles 71 060
|