![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids > Dynamics & vibration
This book has been created on the basis of contributions to the 54th International Conference of Machine Design Departments that was held for the 60th anniversary of Technical University of Liberec. This international conference which follows a tradition going back more than 50 years is one of the longest-running series of conferences held in central Europe, dealing with methods and applications inmachine design. The main aim of the conference was to provide an international forum where experts, researchers, engineers and industrial practitioners, managers and Ph.D. students could meet, share their experiences and present the results of their efforts in the broad field of machine design and related fields. The book has seven chapters which focus on new knowledge of machine design, optimization, tribology, experimental methods and measuring, engineering analyses and product innovation. Authors presented new design methods of machine parts and more complex assemblies with the help of numerical methods such as FEM. Research, measurements and studies of new materials, including composites for energy-efficient constructions are also described. The book also includes solutions and results useful for optimization and innovation of complex design problems in various industries."
Stability and Vibrations of Thin-Walled Composite Structures presents engineering and academic knowledge on the stability (buckling and post buckling) and vibrations of thin walled composite structures like columns, plates, and stringer stiffened plates and shells, which form the basic structures of the aeronautical and space sectors. Currently, this knowledge is dispersed in several books and manuscripts, covering all aspects of composite materials. The book enables both engineers and academics to locate valuable, up-to-date knowledge on buckling and vibrations, be it analytical or experimental, and use it for calculations or comparisons. The book is also useful as a textbook for advanced-level graduate courses.
This book presents a range of fundamentally new approaches to solving problems involving traditional molecular models. Fundamental molecular symmetry is shown to open new avenues for describing molecular dynamics beyond standard perturbation techniques. Traditional concepts used to describe molecular dynamics are based on a few fundamental assumptions, the ball-and-stick picture of molecular structure and the respective perturbative treatment of different kinds of couplings between otherwise separate motions. The book points out the conceptual limits of these models and, by focusing on the most essential idea of theoretical physics, namely symmetry, shows how to overcome those limits by introducing fundamentally new concepts. The book begins with an introduction to molecular symmetry in general, followed by a discussion of nuclear spin symmetry. Here, a new correlation between identical particle exchange and spin angular momentum symmetry of nuclei is exhibited. The central part of the book is the discussion of extremely floppy molecules, which are not describable in the framework of traditional theories. The book introduces a fundamentally new approach to describing the molecular dynamics of these molecules - the super-rotor model, which is based on a five-dimensional symmetry that has never been observed in molecules before. By applying the super-rotor theory to the prototype of floppy molecules, protonated methane, this model can consistently predict the symmetry and energy of low-energy states, which were characterized experimentally only a few years ago. The theoretical predictions agree with the experimental results, which makes the prospect of further developing the super-rotor theory and applying it to other molecules a promising one. In the final section, the book also covers the topic of ultrafast rotations, where usual quantum calculations reach their natural limits. A semi-classical method for determining rotational energies, developed in the early 1990s, is shown to be attachable to quantum calculations of the vibrational states. This new combined method is suitable for efficiently calculating ro-vibrational energies, even for molecular states with large angular momentum.
These proceedings gather outstanding papers presented at the China SAE Congress 2019. Featuring contributions mainly from China, the biggest carmaker as well as most dynamic car market in the world, the book covers a wide range of automotive topics and the latest technical advances in the industry. Many of the approaches included can help technicians to solve practical problems that affect their daily work. In addition, the book offers valuable technical support to engineers, researchers and postgraduate students in the field of automotive engineering.
This book discusses recent research on the stability of various neural networks with constrained signals. It investigates stability problems for delayed dynamical systems where the main purpose of the research is to reduce the conservativeness of the stability criteria. The book mainly focuses on the qualitative stability analysis of continuous-time as well as discrete-time neural networks with delays by presenting the theoretical development and real-life applications in these research areas. The discussed stability concept is in the sense of Lyapunov, and, naturally, the proof method is based on the Lyapunov stability theory. The present book will serve as a guide to enable the reader in pursuing the study of further topics in greater depth and is a valuable reference for young researcher and scientists.
This volume comprises the communications presented at the ETC 11, the EUROMECH European Turbulence conference held in 2007 in Porto. The scientific committee has chosen the contributions out of the following topics: Acoustics of turbulent flows; Atmospheric turbulence; Control of turbulent flows; Geophysical and astrophysical turbulence; Instability and transition; Intermittency and scaling; Large eddy simulation and related techniques; MHD turbulence; Reacting and compressible turbulence; Transport and mixing; Turbulence in multiphase and non-Newtonian flows; Vortex dynamics and structure formation; Wall bounded flows.
Vladimir Babitsky was born before the Second World War and migrated West after Perestroika. The theory of vibro-impact systems that he developed helped create the world's safest jackhammer and other record-breaking machines. The author has lived through a series of fascinating epochs: experiencing life under totalitarianism, witnessing the Soviet Union's collapse, and then migrating to Europe as a specialist in his field. "On the Waves of a Pulsating World" is an animated and highly engaging story about the journey of an engineer; from childhood daydreams to creating new technologies, from East to West, and from concepts to realities. It is also the story of people who outshine authoritarianism.
This book presents select, recent developments in nonlinear and complex systems reported at the 1st Online Conference on Nonlinear Dynamics and Complexity, held on November 23-25, 2020. It provides an exchange recent developments, discoveries, and progresses in Nonlinear Dynamics and Complexity. The collection presents fundamental and frontier theories and techniques for modern science and technology, stimulates more research interest for exploration of nonlinear science and complexity; and passes along new knowledge and insight to the next generation of engineers and technologists in a range of fields.
This is the first monograph dedicated entirely to problems of stability and chaotic behaviour in planetary systems and its subsystems. The author explores the three rapidly developing interplaying fields of resonant and chaotic dynamics of Hamiltonian systems, the dynamics of Solar system bodies, and the dynamics of exoplanetary systems. The necessary concepts, methods and tools used to study dynamical chaos (such as symplectic maps, Lyapunov exponents and timescales, chaotic diffusion rates, stability diagrams and charts) are described and then used to show in detail how the observed dynamical architectures arise in the Solar system (and its subsystems) and in exoplanetary systems. The book concentrates, in particular, on chaotic diffusion and clearing effects. The potential readership of this book includes scientists and students working in astrophysics, planetary science, celestial mechanics, and nonlinear dynamics.
This book provides cutting edge insight into systems dynamics, as applied to engineering systems including control systems. The coverage is intended for both students and practicing engineers. Updated throughout in the second edition, it serves as a firm foundation to develop expertise in design, simulation, prototyping, control, instrumentation, experimentation, and performance analysis.
The book describes analytical methods (based primarily on classical modal synthesis), the Finite Element Method (FEM), Boundary Element Method (BEM), Statistical Energy Analysis (SEA), Energy Finite Element Analysis (EFEA), Hybrid Methods (FEM-SEA and Transfer Path Analysis), and Wave-Based Methods. The book also includes procedures for designing noise and vibration control treatments, optimizing structures for reduced vibration and noise, and estimating the uncertainties in analysis results. Written by several well-known authors, each chapter includes theoretical formulations, along with practical applications to actual structural-acoustic systems. Readers will learn how to use vibroacoustic analysis methods in product design and development; how to perform transient, frequency (deterministic and random), and statistical vibroacoustic analyses; and how to choose appropriate structural and acoustic computational methods for their applications. The book can be used as a general reference for practicing engineers, or as a text for a technical short course or graduate course.
This volume examines current research in mechanics and its applications to various disciplines, with a particular focus on fluid-structure interaction (FSI). The topics have been chosen in commemoration of Dr. Bong Jae Chung and with respect to his wide range of research interests. This volume stands apart because of this diversity of interests, featuring an interdisciplinary and in-depth analysis of FSI that is difficult to find conveniently collected elsewhere in the literature. Contributors include mathematicians, physicists, mechanical and biomechanical engineers, and psychologists. This volume is structured into four thematic areas in order to increase its accessibility: theory, computations, experiments, and applications. Recent Advances in Mechanics and Fluid-Structure Interaction with Applications will appeal to established researchers as well as postdocs and graduate students interested in this active area of research.
This book suggests a new common approach to the study of resonance energy transport based on the recently developed concept of Limiting Phase Trajectories (LPTs), presenting applications of the approach to significant nonlinear problems from different fields of physics and mechanics. In order to highlight the novelty and perspectives of the developed approach, it places the LPT concept in the context of dynamical phenomena related to the energy transfer problems and applies the theory to numerous problems of practical importance. This approach leads to the conclusion that strongly nonstationary resonance processes in nonlinear oscillator arrays and nanostructures are characterized either by maximum possible energy exchange between the clusters of oscillators (coherence domains) or by maximum energy transfer from an external source of energy to the chain. The trajectories corresponding to these processes are referred to as LPTs. The development and the use of the LPTs concept a re motivated by the fact that non-stationary processes in a broad variety of finite-dimensional physical models are beyond the well-known paradigm of nonlinear normal modes (NNMs), which is fully justified either for stationary processes or for nonstationary non-resonance processes described exactly or approximately by the combinations of the non-resonant normal modes. Thus, the role of LPTs in understanding and analyzing of intense resonance energy transfer is similar to the role of NNMs for the stationary processes. The book is a valuable resource for engineers needing to deal effectively with the problems arising in the fields of mechanical and physical applications, when the natural physical model is quite complicated. At the same time, the mathematical analysis means that it is of interest to researchers working on the theory and numerical investigation of nonlinear oscillations.
This book focuses on unhealthy cyber-physical systems. Consisting of 14 chapters, it discusses recognizing the beginning of the fault, diagnosing the appearance of the fault, and stopping the system or switching to a special control mode known as fault-tolerant control. Each chapter includes the background, motivation, quantitative development (equations), and case studies/illustration/tutorial (simulations, experiences, curves, tables, etc.). Readers can easily tailor the techniques presented to accommodate their ad hoc applications.
The focus of this thesis is the interplay of synchrony and adaptivity in complex networks. Synchronization is a ubiquitous phenomenon observed in different contexts in physics, chemistry, biology, neuroscience, medicine, socioeconomic systems, and engineering. Most prominently, synchronization takes place in the brain, where it is associated with cognitive capacities like learning and memory, but is also a characteristic of neurological diseases like Parkinson and epilepsy. Adaptivity is common in many networks in nature and technology, where the connectivity changes in time, i.e., the strength of the coupling is continuously adjusted depending upon the dynamic state of the system, for instance synaptic neuronal plasticity in the brain. This research contributes to a fundamental understanding of various synchronization patterns, including hierarchical multifrequency clusters, chimeras and other partial synchronization states. After a concise survey of the fundamentals of adaptive and complex dynamical networks and synaptic plasticity, in the first part of the thesis the existence and stability of cluster synchronization in globally coupled adaptive networks is discussed for simple paradigmatic phase oscillators as well as for a more realistic neuronal oscillator model with spike-timing dependent plasticity. In the second part of the thesis the interplay of adaptivity and connectivity is investigated for more complex network structures like nonlocally coupled rings, random networks, and multilayer systems. Besides presenting a plethora of novel, sometimes intriguing patterns of synchrony, the thesis makes a number of pioneering methodological advances, where rigorous mathematical proofs are given in the Appendices. These results are of interest not only from a fundamental point of view, but also with respect to challenging applications in neuroscience and technological systems.
1) Includes exemplary MATLAB codes 2) Provides a comprehensive foundation in Fourier methods, essential for a mathematical approach to engineering 3) Applies MFS to hot topics in the field: multi-domain, multi- physics, and multi-scale characteristics 4) Applies Fourier method to structural vibrations, acoustics and vibro-acoustic 5) Aids engineers in solving boundary value problems and differential equations
Vibration and structural acoustics analysis has become an essential requirement for high-quality structural and mechanical design in order to assure acoustic comfort and the integrity, reliability and fail-safe behavior of structures and machines. The underlying technologies of this field of multidisciplinary research are evolving very fast and their dissemination is usually scattered over different and complementary scientific and technical publication means. In order to make it easy for developers and technology end-users to follow the latest developments and news in the field, this book collects into a single volume selected, extended, updated and revised versions of papers presented at the Symposium on Vibration and Structural Acoustics Analysis, coordinated by J. Dias Rodrigues and C. M. A. Vasques, which was organised as part of the 3rd International Conference on Integrity, Reliability & Failure (IRF 2009), co-chaired by J. F. Silva Gomes and Shaker A. Meguid, held at the Faculty of Engineering of the University of Porto, Portugal, 20-24 July 2009. These papers where chosen from the more than 60 papers presented at the conference symposium. Written by experienced practitioners and researchers in the field, this book brings together recent developments in the field, spanning across a broad range of themes: vibration analysis, analytical and computational structural acoustics and vibration, material systems and technologies for noise and vibration control, vibration-based structural health monitoring/evaluation, machinery noise/vibration and diagnostics, experimental testing in vibration and structural acoustics, applications and case studies in structural acoustics and vibration. Each chapter presents and describes the state of the art, presents current research results and discusses the need for future developments in a particular aspect of vibration and structural acoustics analysis. The book is envisaged to be an appealing text for newcomers to the subject and a useful research study tool for advanced students and faculty members. Practitioners and researchers may also find this book a one-stop reference that addresses current and future challenges in this field. The variety of case studies is expected to stimulate a holistic view of sound and vibration and related fields and to appeal to a broad spectrum of engineers such as the ones in the mechanical, aeronautical, aerospace, civil and electrical communities.
This book offers professionals working at power plants guidelines and best practices for vibration problems, in order to help them identify the respective problem, grasp it, and successfully solve it. The book provides very little theoretical information (which is readily available in the existing literature) and doesn't assume that readers have an extensive mathematical background; rather, it presents a range of well-documented, real-world case studies and examples drawn from the authors' 50 years of experience at jobsites. Vibration problems don't crop up very often, thanks to good maintenance and support, but if and when they do, most power plants have very little experience in assessing and solving them. Accordingly, the case studies discussed here will equip power plant engineers to quickly evaluate the vibration problem at hand (by deciding whether the machine is at risk or can continue operating) and find a practical solution.
Recent increasing awareness of the ways in which vibrational effects can affect low-gravity experiments have renewed interest in the study of thermal vibrational convection across a wide range of fields. For example, in applications where vibrational effects are used to provide active control of heat and mass transfer, such as in heat exchangers, stirrers, mineral separators and crystal growth, a sound understanding of the fundamental theory is required. In Thermal Vibrational Convection, the authors present the theory of vibrational effects caused by a static gravity field, and of fluid flows which appear under vibration in fluid-filled cavities. The first part of the book discusses fluid-filled cavities where the fluid motion only appears in the presence of temperature non-uniformities, while the second considers those situations where the vibrational effects are caused by a non-uniform field. Throughout, the authors concentrate on consideration of high frequency vibrations, where averaging methods can be successfully applied in the study of the phenomena. Written by two of the pioneers in this field, Thermal Vibrational Convection will be of great interest to scientists and engineers working in the many areas that are concerned with vibration, and its effect on heat and mass transfer. These include hydrodynamics, hydro-mechanics, low gravity physics and mechanics, and geophysics. The rigorous approach adopted in presenting the theory of this fascinating and highly topical area will facilitate a greater understanding of the phenomena involved, and will lead to the development of more and better-designed experiments.
This book presents a finite and instantaneous screw theory for the development of robotic mechanisms. It addresses the analytical description and algebraic computation of finite motion, resulting in a generalized type synthesis approach. It then discusses the direct connection between topology and performance models, leading to an integrated performance analysis and design framework. The book then explores parameter uncertainty and multiple performance requirements for reliable, optimal design methods, and describes the error accumulation principle and parameter identification algorithm, to increase robot accuracy. It proposes a unified and generic methodology, and appliesto the invention, analysis, design, and calibration of robotic mechanisms. The book is intended for researchers, graduate students and engineers in the fields of robotic mechanism and robot design and applications.
1) Covers different types of cranes including bridge cranes, tower cranes, aerial cranes and dual cranes 2) Provides different industrial applications 3) Demonstrates how to reduce unwanted vibrations to ensure safe and effective operations 4) Discusses how to use advanced control methods in order to reduce vibration
This book offers the first systematic account of canard cycles, an intriguing phenomenon in the study of ordinary differential equations. The canard cycles are treated in the general context of slow-fast families of two-dimensional vector fields. The central question of controlling the limit cycles is addressed in detail and strong results are presented with complete proofs. In particular, the book provides a detailed study of the structure of the transitions near the critical set of non-isolated singularities. This leads to precise results on the limit cycles and their bifurcations, including the so-called canard phenomenon and canard explosion. The book also provides a solid basis for the use of asymptotic techniques. It gives a clear understanding of notions like inner and outer solutions, describing their relation and precise structure. The first part of the book provides a thorough introduction to slow-fast systems, suitable for graduate students. The second and third parts will be of interest to both pure mathematicians working on theoretical questions such as Hilbert's 16th problem, as well as to a wide range of applied mathematicians looking for a detailed understanding of two-scale models found in electrical circuits, population dynamics, ecological models, cellular (FitzHugh-Nagumo) models, epidemiological models, chemical reactions, mechanical oscillators with friction, climate models, and many other models with tipping points.
Develops theoretical background for real time SHM without assuming previous knowledge of the readers Simulates numerical systems and provide relevant code snippets Conducts experiments based on the demonstrations provided in the chapters and provide relevant benchmark results Establishes multidisciplinary applications for disparate industrial fields
This innovative volume provides a systematic treatment of the basic concepts and computational procedures for structural motion design and engineering for civil installations. The authors illustrate the application of motion control to a wide spectrum of buildings through many examples. Topics covered include optimal stiffness distributions for building-type structures, the role of damping in controlling motion, tuned mass dampers, base isolation systems, linear control, and nonlinear control. The book's primary objective the satisfaction of motion-related design requirements such as restrictions on displacement and acceleration and seeks the optimal deployment of material stiffness and motion control devices to achieve these design targets as well as satisfy constraints on strength. The book is ideal for practicing engineers and graduate students.
This book addresses a special topic in the field of nonlinear dynamical systems, develops a new research direction of surface chaos and surface bifurcation. It provides a clear watershed for original nonlinear chaos and bifurcation research. The novel content of this book makes nonlinear system research more systematical and personalized. This book introduces the chaos and bifurcation behavior of surface dynamics in the sense of Li Yorke, the basic properties, Lyapunov exponent and Feigenbaum constant of nonlinear behavior of surface, and obtained the wave behavior of chaotic process in surface motion, the control of surface chaos and bifurcation, and the wide application of surface chaos in engineering technology. Through this book, readers can obtain more abundant and novel contents about surface chaos and surface bifurcation than the existing mixed fitting bifurcation of plane curve and space curve, which can also expand the realm and vision of research. |
You may like...
Reference for Modern Instrumentation…
R.N. Thurston, Allan D. Pierce
Hardcover
R3,460
Discovery Miles 34 600
Active Control of Vibration
Christopher C. Fuller, S.J. Elliott, …
Paperback
Progress in Turbulence VIII…
Ramis Oerlu, Alessandro Talamelli, …
Hardcover
R4,057
Discovery Miles 40 570
Qualitative Analysis of Nonsmooth…
Alain Leger, Elaine Pratt
Hardcover
R2,320
Discovery Miles 23 200
|