![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids > Dynamics & vibration
Friction-Induced Vibration in Lead Screw Drives covers the dynamics of lead screw drives with an emphasis on the role of friction. Friction-induced vibration in lead screws can be the cause of unacceptably high levels of audible noise as well as loss of operation accuracy and shortened life. Although lead screw drives have a long history and their mechanical design and manufacturing aspects are very well understood, the role of friction in their dynamical behavior has not been comprehensively treated. The book draws on the vast body of work on the subject of dynamical systems with friction (such as disk brake systems) and offers said treatment, along with: * Unique coverage of modeling of multi-DOF lead screw systems with friction * Detailed analysis of negative damping, mode coupling, and kinematic constraint instability mechanisms in lead screws drives * A practical parameter identification approach for the velocity dependent coefficient of friction in lead screw drives Friction-Induced Vibration in Lead Screw Drives serves as the definitive text on the friction-induced vibration of lead screws, and includes a practical case study where the developed methods are used to study the excessive noise problem of a lead screw drive system and to put forward design modifications that eliminate the friction-induced vibrations.
This book focuses on bifurcation and stability in nonlinear discrete systems, including monotonic and oscillatory stability. It presents the local monotonic and oscillatory stability and bifurcation of period-1 fixed-points on a specific eigenvector direction, and discusses the corresponding higher-order singularity of fixed-points. Further, it explores the global analysis of monotonic and oscillatory stability of fixed-points in 1-dimensional discrete systems through 1-dimensional polynomial discrete systems. Based on the Yin-Yang theory of nonlinear discrete systems, the book also addresses the dynamics of forward and backward nonlinear discrete systems, and the existence conditions of fixed-points in said systems. Lastly, in the context of local analysis, it describes the normal forms of nonlinear discrete systems and infinite-fixed-point discrete systems. Examining nonlinear discrete systems from various perspectives, the book helps readers gain a better understanding of the nonlinear dynamics of such systems.
The first contemporary text specializing on the dynamic problems of piezoelectric crystal plates for resonant acoustic wave devices (such as resonators, filters, and sensors) since H F Tiersten's publication in 1969. This book provides an up-to-date, systematic and comprehensive presentation of theoretical results on waves and vibrations in quartz crystal plates. It expounds on the application of the theories of elasticity and piezoelectricity in acoustic wave devices made from crystal plates through a coverage spanning from classical results on acoustic wave resonators, up to present-day applications in acoustic wave sensors. This text begins with the exposition of the simplest thickness modes and various frequency effects in them due to electrodes, mass loading, contact with fluids, air gaps, etc., and continues on to the more complicated shear-horizontal modes, as well as straight-crested modes varying along the digonal axis of rotated Y-cut quartz. Modes varying in both of the in-plane directions of crystal plates are also addressed. The analysis within are based on the three-dimensional theories of piezoelectricity and anisotropic elasticity with various approximations when needed. Both free vibration modes (stationary waves) and propagating waves are studied in this text. Forced vibration is also treated in a few places. This book is intended to serve as an informative reference to personnel who employ piezoelectric crystal plates in the course of their profession.
The finite element, an approximation method for solving
differential equations of mathematical physics, is a highly
effective technique in the analysis and design, or synthesis, of
structural dynamic systems. Starting from the system differential
equations and its boundary conditions, what is referred to as a
weak form of the problem (elaborated in the text) is developed in a
variational sense. This variational statement is used to define
elemental properties that may be written as matrices and vectors as
well as to identify primary and secondary boundaries and all
possible boundary conditions. Specific equilibrium problems are
also solved.
The trends and progress attained in computational kinematics over a broad class of problems are grouped into six parts describing the main themes: kinematics algorithms, discussing kinematics problems in light of their solution algorithms; kinematics of mechanisms, studying problems related to specific mechanisms; singularities; workspace, discussing the determination of the workspace of given mechanisms; parallel manipulators; and motion and grasp planning, touching on computational geometry. The volume contains a representative sample of the most modern techniques available for kinetics problems, including techniques based on advances in algebraic geometry. Researchers, graduate students and practising engineers in work relating to kinematics, robotics, machine design and computer science should find this work useful.
Structural Vibration: Exact Solutions for Strings, Membranes, Beams, and Plates offers an introduction to structural vibration and highlights the importance of the natural frequencies in design. It focuses on free vibrations for analysis and design of structures and machine and presents the exact vibration solutions for strings, membranes, beams, and plates. This book emphasizes the exact solutions for free transverse vibration of strings, membranes, beams, and plates. It explains the intrinsic, fundamental, and unexpected features of the solutions in terms of known functions as well as solutions determined from exact characteristic equations. The book provides: A single-volume resource for exact solutions of vibration problems in strings, membranes, beams, and plates A reference for checking vibration frequency values and mode shapes of structural problems Governing equations and boundary conditions for vibration of structural elements Analogies of vibration problems Structural Vibration: Exact Solutions for Strings, Membranes, Beams, and Plates provides practicing engineers, academics, and researchers with a reference for data on a specific structural member as well as a benchmark standard for numerical or approximate analytical methods.
This book consists of review articles by experts on recent developments in mechanical engineering sciences. The book has been composed to commemorate the Silver Jubilee of the Mechanical Engineering Department, Indian Institute of Technology Guwahati. It includes articles on modern mechanical sciences subjects of advanced simulation techniques and molecular dynamics, microfluidics and microfluidic devices, energy systems, intelligent fabrication, microscale manufacturing, smart materials, computational techniques, robotics and their allied fields. It presents the upcoming and emerging areas in mechanical sciences which will help in formulation of new courses and updating existing curricula. This book will help the academicians and policy makers in the field of engineering education to chart out the desired path for the development of technical education.
The book features selected high-quality papers presented at the International Conference on Computing, Power and Communication Technologies 2019 (GUCON 2019), organized by Galgotias University, India, in September 2019. Divided into three sections, the book discusses various topics in the fields of power electronics and control engineering, power and energy systems, and machines and renewable energy. This interesting compilation is a valuable resource for researchers, engineers and students.
This corrected version of the landmark 1981 textbook introduces the physical principles and theoretical basis of acoustics with deep mathematical rigor, concentrating on concepts and points of view that have proven useful in applications such as noise control, underwater sound, architectural acoustics, audio engineering, nondestructive testing, remote sensing, and medical ultrasonics. Since its publication, this text has been used as part of numerous acoustics-related courses across the world, and continues to be used widely today. During its writing, the book was fine-tuned according to insights gleaned from a broad range of classroom settings. Its careful design supports students in their pursuit of a firm foundation while allowing flexibility in course structure. The book can easily be used in single-term or full-year graduate courses and includes problems and answers. This rigorous and essential text is a must-have for any practicing or aspiring acoustician.
This concise textbook for students preferably of a postgraduate level, but also for engineers in practice, contains the basic kinematical and kinetic structures of dynamics together with carefully selected applications. The book is a condensed introduction to the fundamental laws of kinematics and kinetics, on the most important principles of mechanics and presents the equations of motion in the form of Lagrange and Newton-Euler. Selected problems of linear and nonlinear dynamics are treated, as well as problems of vibration formation. The presented selection of topics gives a useful basis for stepping into more advanced problems of dynamics. The contents of this book represent the result of a regularly revised course, which has been and still is given for masters students at the Technische Universitat Munchen.
This book is a collection of papers contributed by some of the greatest names in the areas of chaos and nonlinear dynamics. Each paper examines a research topic at the frontier of the area of dynamical systems. As well as reviewing recent results, each paper also discusses the future perspectives of each topic. The result is an invaluable snapshot of the state of the ?eld by some of the most important researchers in the area. The ?rst contribution in this book (the section entitled "How did you get into Chaos?") is actually not a paper, but a collection of personal accounts by a number of participants of the conference held in Aberdeen in September 2007 to honour Celso Grebogi's 60th birthday. At the instigation of James Yorke, many of the most well-known scientists in the area agreed to share their tales on how they got involved in chaos during a celebratory dinner in Celso's honour during the conference. This was recorded in video, we felt that these accounts were a valuable historic document for the ?eld. So we decided to transcribe it and include it here as the ?rst section of the book.
The aim of the book is to give an up-to-date review of rotor dynamics, dealing with basic topics as well as a number of specialized topics usually available only in journal articles. Part I deals with the classical topics of rotor dynamics, the dynamic behavior of linear, steady state rotating machines; simple models as well systems with many degrees of freedom obtained from finite element models. Part II, advanced rotor dynamics deals with some specialized topics on rotors, bearings, discs and blades. The accompanying CD-ROM includes a simplified version of the DYNROT code and two short videos.
The concept of dynamics and control implies the combination of dynamic analysis and control synthesis. It is essential to gain insight into the dynamics of a nonlinear system with uncertainty if any new control strategy is designed to utilize nonlinearity. However, the new control strategy to be proposed must be robust enough so that any unexpected small disturbances will not alter the desired target of control. Such a concept is calling more attention to the modelling and simplification of dynamic systems subject to uncertain environment, the fine analysis and robust design of controlled dynamic systems resulting in new control strategies due to understanding of nonlinear phenomena and artificial intelligence, the combination of passive control, active control and semi-active control, as well as the interaction among sensors, controllers and actuators.
This monograph presents an approachable proof of Mirzakhani's curve counting theorem, both for simple and non-simple curves. Designed to welcome readers to the area, the presentation builds intuition with elementary examples before progressing to rigorous proofs. This approach illuminates new and established results alike, and produces versatile tools for studying the geometry of hyperbolic surfaces, Teichmuller theory, and mapping class groups. Beginning with the preliminaries of curves and arcs on surfaces, the authors go on to present the theory of geodesic currents in detail. Highlights include a treatment of cusped surfaces and surfaces with boundary, along with a comprehensive discussion of the action of the mapping class group on the space of geodesic currents. A user-friendly account of train tracks follows, providing the foundation for radallas, an immersed variation. From here, the authors apply these tools to great effect, offering simplified proofs of existing results and a new, more general proof of Mirzakhani's curve counting theorem. Further applications include counting square-tiled surfaces and mapping class group orbits, and investigating random geometric structures. Mirzakhani's Curve Counting and Geodesic Currents introduces readers to powerful counting techniques for the study of surfaces. Ideal for graduate students and researchers new to the area, the pedagogical approach, conversational style, and illuminating illustrations bring this exciting field to life. Exercises offer opportunities to engage with the material throughout. Basic familiarity with 2-dimensional topology and hyperbolic geometry, measured laminations, and the mapping class group is assumed.
This book is a collection of research papers selected for presentation at the International Conference on Smart Computational Methods in Continuum Mechanics 2021, organized by Moscow Institute of Physics and Technology and the Institute for Computer Aided Design of Russian Academy of Sciences. The work is presented in two volumes. The primary objective of the book is to report the state-of-the-art on smart computational paradigms in continuum mechanics and explore the use of artificial intelligence paradigms such as neural nets, and machine learning for improving the performance of the designed engineering systems. The book includes up-to-date smart computational methods which are used to solve problems in continuum mechanics, engineering, seismic prospecting, non-destructive testing, and so on. The main features of the book are the research papers on the application of novel smart methods including neural nets and machine learning, computational algorithms, smart software systems, and high-performance computer systems for solving complex engineering problems. The case studies pertaining to the real-world applications in the above fields are included. The book presents a collection of best research papers in English language from some of the world leaders in the field of smart system modelling and design of engineering systems.
This book comprises select proceedings of the International Conference on Future Learning Aspects of Mechanical Engineering (FLAME 2018). The book discusses different topics of industrial and production engineering such as sustainable manufacturing systems, computer-aided engineering, rapid prototyping, manufacturing management and automation, metrology, manufacturing process optimization, casting, welding, machining, and machine tools. The contents of this book will be useful for researchers as well as professionals.
In this book, regular structures are de ned as periodic structures consisting of repeated elements (translational symmetry) as well as structures with a geom- ric symmetry. Regular structures have for a long time been attracting the attention of scientists by the extraordinary beauty of their forms. They have been studied in many areas of science: chemistry, physics, biology, etc. Systems with geometric symmetry are used widely in many areas of engineering. The various kinds of bases under machines, cyclically repeated forms of stators, reduction gears, rotors with blades mounted on them, etc. represent regular structures. The study of real-life engineering structures faces considerable dif culties because they comprise a great number of working mechanisms that, in turn, consist of many different elastic subsystems and elements. The computational models of such systems represent a hierarchical structure and contain hundreds and thousands of parameters. The main problems in the analysis of such systems are the dim- sion reduction of model and revealing the dominant parameters that determine its dynamics and form its energy nucleus. The two most widely used approaches to the simulation of such systems are as follows: 1. Methods using lumped parameters models, i.e., a discretization of the original system and its representation as a system with lumped parameters [including nite-element method (FEM)]. 2. The use of idealized elements with distributed parameters and known analytical solutions for both the local elements and the subsystems.
This book introduces the latest advances in modular robotics, and presents a unified geometric framework for modeling, analysis, and design of modular robots, including kinematics, dynamics, calibration, and configuration optimization. Supplementing the main content with a wealth of illustrations, the book offers a valuable guide for researchers, engineers and graduate students in the fields of mechatronics, robotics, and automation who wish to learn about the theory and practice of modular robots.
Since the publication of the first edition, considerable progress has been made in the development and application of active noise control (ANC) systems, particularly in the propeller aircraft and automotive industries. Treating the active control of both sound and vibration in a unified way, this second edition of Active Control of Noise and Vibration continues to combine coverage of fundamental principles with the most recent theoretical and practical developments. What's New in This Edition Revised, expanded, and updated information in every chapter Advances in feedforward control algorithms, DSP hardware, and applications Practical application examples of active control of noise propagating in ducts The use of a sound intensity cost function, model reference control, sensing radiation modes, modal filtering, and a comparison of the effectiveness of various sensing strategies New material on feedback control of sound transmission into enclosed spaces New material on model uncertainty, experimental determination of the system model, optimization of the truncated model, collocated actuators and sensors, biologically inspired control, and a discussion of centralised versus de-centralised control A completely revised chapter on control system implementation New material on parametric array loudspeakers, turbulence filtering, and virtual sensing More material on smart structures, electrorheological fluids, and magnetorheological fluids Integrating the related disciplines of active noise control and active vibration control, this comprehensive two-volume set explains how to design and implement successful active control systems in practice. It also details the pitfalls one must avoid to ensure a reliable and stable system.
Engineering dynamics and vibrations has become an essential topic for ensuring structural integrity and operational functionality in different engineering areas. However, practical problems regarding dynamics and vibrations are in many cases handled without success despite large expenditures. This book covers a wide range of topics from the basics to advances in dynamics and vibrations; from relevant engineering challenges to the solutions; from engineering failures due to inappropriate accounting of dynamics to mitigation measures and utilization of dynamics. It lays emphasis on engineering applications utilizing state-of-the-art information.
This is the first book focusing on bifurcation dynamics in 1-dimensional polynomial nonlinear discrete systems. It comprehensively discusses the general mathematical conditions of bifurcations in polynomial nonlinear discrete systems, as well as appearing and switching bifurcations for simple and higher-order singularity period-1 fixed-points in the 1-dimensional polynomial discrete systems. Further, it analyzes the bifurcation trees of period-1 to chaos generated by period-doubling, and monotonic saddle-node bifurcations. Lastly, the book presents methods for period-2 and period-doubling renormalization for polynomial discrete systems, and describes the appearing mechanism and period-doublization of period-n fixed-points on bifurcation trees for the first time, offering readers fascinating insights into recent research results in nonlinear discrete systems.
Controlling a system's vibrational behavior, whether for reducing
harmful vibrations or for enhancing useful types, is critical to
ensure safe and economical operation as well as longer structural
and equipment lifetimes. A related issue is the effect of vibration
on humans and their environment. Achieving control of vibration
requires thorough understanding of system behavior, and Vibration
Monitoring, Testing, and Instrumentation provides a convenient,
thorough, and up-to-date source of tools, techniques, and data for
instrumenting, experimenting, monitoring, measuring, and analyzing
vibration in a variety of mechanical and structural systems and
environments.
Understanding and controlling vibration is critical for reducing noise, improving work environments and product quality, and increasing the useful life of industrial machinery and other mechanical systems. Computer-based modeling and analytical tools provide fast, accurate, and efficient means of designing and controlling a system for improved vibratory and, subsequently, acoustic performance. Computer Techniques in Vibration provides an overview as well as a detailed account and application of the various tools and techniques available for modeling and simulating vibrations. Drawn from the immensely popular Vibration and Shock Handbook, each expertly crafted chapter of this book includes convenient summary windows, tables, graphs, and lists to provide ready access to the important concepts and results. Working systematically from general principles to specific applications, the coverage spans from numerical techniques, modeling, and software tools to analysis of flexibly supported multibody systems, finite element applications, vibration signal analysis, fast Fourier transform (FFT), and wavelet techniques and applications. MATLAB(R) toolboxes and other widely available software packages feature prominently in the discussion, accompanied by numerous examples, sample outputs, and a case study. Instead of wading through heavy volumes or software manuals for the techniques you need, find a ready collection of eminently practical tools in Computer Techniques in Vibration.
The Fifth Edition of this classic work retains the most useful portions of Timoshenko's book on vibration theory and introduces powerful, modern computational techniques. The normal mode method is emphasized for linear multi-degree and infinite-degree-of-freedom systems and numerical methods dominate the approach to nonlinear systems. A new chapter on the finite-element method serves to show how any continuous system can be discretized for the purpose of simplifying the analysis. Includes revised problems, examples of applications and computer programs. |
You may like...
|