![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids > Dynamics & vibration
This book presents the most recent trends and concepts in power engineering, especially with regard to prosumer and civic energy generation. In so doing, it draws widely on his experience gained during the development of steam microturbines for use in small combined heat and power stations based on the organic Rankine cycle (CHP-ORC). Major issues concerning the dynamic properties of mechanical systems, in particular rotating systems, are discussed, and the results obtained when using unconventional bearing systems, presented. Modeling and analysis of radial-flow and axial-flow microturbines are addressed in detail, covering rotor analysis with different bearing systems, simulation modal analysis, and stress analysis. Furthermore, experimental studies of the dynamic properties of microturbine elements are extensively described. Interest in distributed generation and CHP-ORC is growing rapidly, and the potential market for such systems promises to be very large. This book will be of value for engineers and scientists involved in the design, modeling, operation, and diagnostics of various types of turbomachinery, especially steam microturbines.
The EUCOMES08, Second European Conference on Mechanism Science is the second event of a series that has been started in 2006 as a conference activity for an European community working in Mechanism Science. The ?rst event was held in Obergurgl, Austria in 2006. This year EUCOMES08 Conference has come to Cassino in Italy taking place from 17 to 20 September 2008. TheaimoftheEUCOMESConference istobringtogetherEuropean researchers, industry professionals and students from the broad ranges of disciplines referring to Mechanism Science, in an intimate, collegial and stimulating environment. In this second event we have received an increased attention to the initiative, as canbeseenbythefactthattheEUCOMES08Proceedingswillcontaincontributions by authors even from all around the world. This means also that there is a really interest to have not only a conference frame but even a need of aggregation for an European Community well identi?ed in Mechanism Science with the aim to strengthen common views and collaboration activities among European researchers and institutions. I believe that a reader will take advantage of the papers in these Proceedings with further satisfaction and motivation for her or his work. These papers cover the wide ?eld of the Mechanism Science. The program of EUCOMES08 Conference has included technical sessions with oral presentations, which, together with informal conversations during the social program, have enabled to offer wide opportunities to share experiences and discuss scienti?c achievements and current trends in the areas encompassed by the EUCOMES08 conference.
Suitable for both individual and group learning, Engineering Acoustics focuses on basic concepts and methods to make our environments quieter, both in buildings and in the open air. The author s tutorial style derives from the conviction that understanding is enhanced when the necessity behind the particular teaching approach is made clear. He also combines mathematical derivations and formulas with extensive explanations and examples to deepen comprehension. Fundamental chapters on the physics and perception of sound precede those on noise reduction (elastic isolation) methods. The last chapter deals with microphones and loudspeakers. Moeser includes major discoveries by Lothar Cremer, including the optimum impedance for mufflers and the coincidence effect behind structural acoustic transmission. The appendix gives a short introduction on the use of complex amplitudes in acoustics. "
Continuous-system simulation is an increasingly important tool for optimizing the performance of real-world systems. The book presents an integrated treatment of continuous simulation with all the background and essential prerequisites in one setting. It features updated chapters and two new sections on Black Swan and the Stochastic Information Packet (SIP) and Stochastic Library Units with Relationships Preserved (SLURP) Standard. The new edition includes basic concepts, mathematical tools, and the common principles of various simulation models for different phenomena, as well as an abundance of case studies, real-world examples, homework problems, and equations to develop a practical understanding of concepts.
This book is a collection of papers presented at Acoustics and Vibration of Mechanical Structures 2017 - AVMS 2017 - highlighting the current trends and state-of-the-art developments in the field. It covers a broad range of topics, such as noise and vibration control, noise and vibration generation and propagation, the effects of noise and vibration, condition monitoring and vibration testing, modeling, prediction and simulation of noise and vibration, environmental and occupational noise and vibration, noise and vibration attenuators, as well as biomechanics and bioacoustics. The book also presents analytical, numerical and experimental techniques for evaluating linear and non-linear noise and vibration problems (including strong nonlinearity). It is primarily intended for academics, researchers and professionals, as well as PhD students in various fields of the acoustics and vibration of mechanical structures.
This textbok deals with modelling, analysis, and control of dynamical systems. Its objective is to familiarize students with the basics of dynamical system theory while equipping them with the tools needed for control system design. The emphasis is on design in order to show how dynamical system theory fits into practical applications. The broad scope of this book allows it to demonstrate the multidisciplinary role of dynamics and control. In particular, it presents neural networks, fuzzy systems, and genetic algorithms, and provides a concise introducton to chaotic systems. Systems and Control covers classical methods as well as the techniques of modern control engineering such as fuzzy logic, neural networks, and genetic algorithms. No special background is necessary to use this text beyond basic differential equations and elements of linear algebra. A free solutions manual is avaialbe for adopting lecturers.
This book presents the most recent advances on the mechanics of soft and composite shells and their nonlinear vibrations and stability, including advanced problems of modeling human vessels (aorta) with fluid-structure interaction. It guides the reader into nonlinear modelling of shell structures in applications where advanced composite and complex biological materials must be described with great accuracy. To achieve this goal, the book presents nonlinear shell theories, nonlinear vibrations, buckling, composite and functionally graded materials, hyperelasticity, viscoelasticity, nonlinear damping, rubber and soft biological materials. Advanced nonlinear shell theories, not available in any other book, are fully derived in a simple notation and are ready to be implemented in numerical codes. The work features a blend of the most advanced theory and experimental results, and is a valuable resource for researchers, professionals and graduate students, especially those interested in mechanics, aeronautics, civil structures, materials, bioengineering and solid matter at different scales.
This book discusses the maintenance aspect of rotating machines, which it addresses through a collection of contributions. Sharing the "hands-on" views of experienced engineers on the aspect of maintenance for rotating machines, it offers a valuable reference guide for practicing engineers in the related industries, providing them a glimpse of some of the most common problems associated with rotating machines and equipment in the field, and helping them achieve maximum performance efficiency and high machine availability.
Topics in Modal Analysis & Testing, Volume 10: Proceedings of the 35th IMAC, A Conference and Exposition on Structural Dynamics, 2017, the tenth volume of ten from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Modal Analysis, including papers on: Operational Modal & Modal Analysis Applications Experimental Techniques Modal Analysis, Measurements & Parameter Estimation Modal Vectors & Modeling Basics of Modal Analysis Additive Manufacturing & Modal Testing of Printed Parts
The main goal of this book is to show how to modify and optimize the properties of the damping matrix in order to find the most beneficial way of adding damping to a given mechanical system. To this end, a two-degree-of-freedom model of disc brake is analyzed to gain insight into the fundamental physical behavior of damping. In addition, more realistic, high-dimensional finite element brake models are studied and optimized for stability.
This edition of this well-received engineering text retains the clarity of exposition that made the previous editions so popular, and contains the most widely-used problem sets in the business. Its approach to vibration analysis is clear, concise, and simple, backed up by a wealth of problems and examples. Multi- degree-of-freedom problems are well-prefaced with two-degree-of- freedom cases. There is a special treatment of damping, including non-viscous problems (standard texts make much use of viscous damping, but most practical examples are not viscous). The text now includes an excellent development of Rayleigh's principle and an introduction to finite element vibration analysis. It also contains 100 new problems.
Focussing on occurrences of unstable vibrations, or Chatter, in machine tools, this book gives important insights into how to eliminate chatter with associated improvements in product quality, surface finish and tool wear. Covering a wide range of machining processes, including turning, drilling, milling and grinding, the author uses his research expertise and practical knowledge of vibration problems to provide solutions supported by experimental evidence of their effectiveness. In addition, this book contains links to supplementary animation programs that help readers to visualise the ideas detailed in the text. Advancing knowledge in chatter avoidance and suggesting areas for new innovations, Chatter and Machine Tools serves as a handbook for those desiring to achieve significant reductions in noise, longer tool and grinding wheel life and improved product finish.
The basic principles guiding sensing, perception and action in bio systems seem to rely on highly organised spatial-temporal dynamics. In fact, all biological senses, (visual, hearing, tactile, etc.) process signals coming from different parts distributed in space and also show a complex time evolution. As an example, mammalian retina performs a parallel representation of the visual world embodied into layers, each of which r- resents a particular detail of the scene. These results clearly state that visual perception starts at the level of the retina, and is not related uniquely to the higher brain centres. Although vision remains the most useful sense guiding usual actions, the other senses, ?rst of all hearing but also touch, become essential particularly in cluttered conditions, where visual percepts are somehow obscured by environment conditions. Ef?cient use of hearing can be learnt from acoustic perception in animals/insects, like crickets, that use this ancient sense more than all the others, to perform a vital function, like mating.
This book presents high-quality original contributions on positive systems, including topics such as: monotone dynamical systems in mathematical biology and game theory; mathematical developments for networked systems in biology, chemistry and the social sciences; linear and nonlinear positive operators; dynamical analysis, observation and control of positive distributed parameter systems; stochastic realization theory; biological systems with positive variables and positive controls; iterated function systems; nonnegative dynamic processes; and dimensioning problems for collaborative systems. The book comprises a selection of the best papers presented at the POSTA 2016, the 5th International Symposium on Positive Systems, which was held in Rome, Italy, in September 2016. This conference series represents a targeted response to the growing need for research that reports on and critically discusses a wide range of topics concerning the theory and applications of positive systems.
This book reports on topics at the interface between manufacturing, mechanical and chemical engineering. It gives a special emphasis to CAD/CAE systems, information management systems, advanced numerical simulation methods and computational modeling techniques, and their use in product design, industrial process optimization and in the study of the properties of solids, structures and fluids. Control theory, ICT for engineering education as well as ecological design and food technologies are also among the topics discussed in the book. Based on the International Conference on Design, Simulation, Manufacturing: The Innovation Exchange (DSMIE-2018), held on June 12-15, 2018, in Sumy, Ukraine, the book provides academics and professionals with a timely overview and extensive information on trends and technologies behind current and future developments of Industry 4.0, innovative design and renewable energy generation.
This book gathers the revised lecture notes from a seminar course offered at the Federal University of Rio de Janeiro in 1986, then in Tokyo in 1987. An additional chapter has been added to reflect more recent advances in the field.
This brief examines mathematical models in nonsmooth mechanics and nonregular electrical circuits, including evolution variational inequalities, complementarity systems, differential inclusions, second-order dynamics, Lur'e systems and Moreau's sweeping process. The field of nonsmooth dynamics is of great interest to mathematicians, mechanicians, automatic controllers and engineers. The present volume acknowledges this transversality and provides a multidisciplinary view as it outlines fundamental results in nonsmooth dynamics and explains how to use them to study various problems in engineering. In particular, the author explores the question of how to redefine the notion of dynamical systems in light of modern variational and nonsmooth analysis. With the aim of bridging between the communities of applied mathematicians, engineers and researchers in control theory and nonlinear systems, this brief outlines both relevant mathematical proofs and models in unilateral mechanics and electronics.
This successful book gives an introduction to the basics of aerothermodynamics, as applied in particular to winged re-entry vehicles and airbreathing hypersonic cruise and acceleration vehicles. The book gives a review of the issues of transport of momentum, energy and mass, real-gas effects as well as inviscid and viscous flow phenomena. In this second, revised edition the chapters with the classical topics of aerothermodynamics more or less were left untouched. The access to some single topics of practical interest was improved. Auxiliary chapters were put into an appendix. The recent successful flights of the X-43A and the X-51A indicate that the dawn of sustained airbreathing hypersonic flight now has arrived. This proves that the original approach of the book to put emphasis on viscous effects and the aerothermodynamics of radiation-cooled vehicle surfaces was timely. This second, revised edition even more accentuates these topics. A new, additional chapter treats examples of viscous thermal surface effects. Partly only very recently obtained experimental and numerical results show the complexity of such phenomena (dependence of boundary-layer stability, skin friction, boundary-layer thicknesses, and separation on the thermal state of the surface) and their importance for airbreathing hypersonic flight vehicles, but also for any other kind of hypersonic vehicle.
This book describes system dynamics with discontinuity caused by system interactions and presents the theory of flow singularity and switchability at the boundary in discontinuous dynamical systems. Based on such a theory, the authors address dynamics and motion mechanism of engineering discontinuous systems due to interaction. Stability and bifurcations of fixed points in nonlinear discrete dynamical systems are presented, and mapping dynamics are developed for analytical predictions of periodic motions in engineering discontinuous dynamical systems. Ultimately, the book provides an alternative way to discuss the periodic and chaotic behaviors in discontinuous dynamical systems.
Vehicle dynamics and road dynamics are usually considered to be two largely independent subjects. In vehicle dynamics, road surface roughness is generally regarded as random excitation of the vehicle, while in road dynamics, the vehicle is generally regarded as a moving load acting on the pavement. This book suggests a new research concept to integrate the vehicle and the road system with the help of a tire model, and establishes a cross-subject research framework dubbed vehicle-pavement coupled system dynamics. In this context, the dynamics of the vehicle, road and the vehicle-road coupled system are investigated by means of theoretical analysis, numerical simulations and field tests. This book will be a valuable resource for university professors, graduate students and engineers majoring in automotive design, mechanical engineering, highway engineering and other related areas. Shaopu Yang is a professor and deputy president of Shijiazhuang Tiedao University, China; Liqun Chen is a professor at Shanghai University, Shanghai, China; Shaohua Li is a professor at Shijiazhuang Tiedao University, China.
Shock & Vibration, Aircraft/Aerospace, Energy Harvesting, Volume 9: Proceedings of the 33rd IMAC, A Conference and Exposition on Structural Dynamics, 2015, the ninth volume of ten from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Shock & Vibration, Aircraft/Aerospace , Energy Harvesting, including papers on:  Energy Harvesting Adaptive Support Shock Calibration Operating Data Applications
In this volume, top seismic experts and researchers from Europe and around the world, including the George E. Brown, Jr. Network for Earthquake Engineering Simulation (NEES) in the USA, present the most recent outcome of their work in experimental testing, as well as the results of the transnational access activities of external researchers who have used Europe's seven largest and most advanced seismic testing facilities in the framework of the Seismic Engineering Research Infrastructures for European Synergies (SERIES) Project financed by the European Commission in its 7th Framework Programme (2007-2013). This includes EU’s largest reaction wall facility, EU's four largest shaking table laboratories and its two major centrifuges. The work presented includes state-of-the-art research towards the seismic design, assessment and retrofitting of structures, as well as the development of innovative research toward new fundamental technologies and techniques promoting efficient and joint use of the research infrastructures. The contents of this volume demonstrate the fruits of the effort of the European Commission in supporting research in earthquake engineering.
Special Topics in Structural Dynamics, Volume 6: Proceedings of the 33rd IMAC, A Conference and Exposition on Structural Dynamics, 2015, the sixth volume of ten from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on: Aircraft/Aerospace Active Control Analytical Methods System Identification Sensors and Instrumentation
This book presents a basic introduction to micromechanisms and microactuators, particularly to their basic configurations and design. This book fills the persisting gap in the published literature on the mechanical manipulative aspects of micromechanisms. It also helps in offering specialized introductory courses on micromechanisms and microactuators not as part of MEMS sensing devices, but as mechanical manipulative systems. The level of the book is suitable for use in both undergraduate and introductory graduate programmes. The book presents an overview of miniaturization and scaling laws, basic design principles of micro-sized mechanisms and actuators, micro-fabrication processes, and some futuristic issues. The volume contains a large number of figures and illustrations for easy understanding by the readers. It will also be useful to researchers and professionals looking for an introduction to the topic.
Chaos and nonlinear dynamics initially developed as a new emergent field with its foundation in physics and applied mathematics. The highly generic, interdisciplinary quality of the insights gained in the last few decades has spawned myriad applications in almost all branches of science and technology—and even well beyond. Wherever quantitative modeling and analysis of complex, nonlinear phenomena is required, chaos theory and its methods can play a key role. his fourth volume concentrates on reviewing further relevant contemporary applications of chaotic and nonlinear dynamics as they apply to the various cuttingedge branches of science and engineering. This encompasses, but is not limited to, topics such as synchronization in complex networks and chaotic circuits, time series analysis, ecological and biological patterns, stochastic control theory and vibrations in mechanical systems. Featuring contributions from active and leading research groups, this collection is ideal both as a reference and as a ‘recipe book’ full of tried and tested, successful engineering applications. |
You may like...
Mechanics of Flow-Induced Sound and…
William K. Blake
Paperback
Reference for Modern Instrumentation…
R.N. Thurston, Allan D. Pierce
Hardcover
R3,460
Discovery Miles 34 600
Geodetic Sciences - Theory, Applications…
Bihter Erol, Serdar Erol
Hardcover
R3,077
Discovery Miles 30 770
Reference for Modern Instrumentation…
R.N. Thurston, Allan D. Pierce
Hardcover
R4,086
Discovery Miles 40 860
Progress in Turbulence VIII…
Ramis Oerlu, Alessandro Talamelli, …
Hardcover
R4,057
Discovery Miles 40 570
Vibration of Functionally Graded Beams…
Snehashish Chakraverty, Karan Kumar Pradhan
Paperback
Proceedings of the 10th International…
Katia Lucchesi Cavalca, Hans Ingo Weber
Hardcover
R5,242
Discovery Miles 52 420
Active Control of Vibration
Christopher C. Fuller, S.J. Elliott, …
Paperback
|