![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids > Dynamics & vibration
Introduces Systematic Formulations for Use in Acoustic Applications Acoustics in Moving Inhomogeneous Media, Second Edition offers a uniquely complete and rigorous study of sound propagation and scattering in moving media with deterministic and random inhomogeneities. This study is of great importance in many fields including atmospheric and oceanic acoustics, aeroacoustics, acoustics of turbulent flows, remote sensing of the atmosphere and ocean, noise pollution in the atmosphere, and wave propagation. Provides Sensible Explanations Using Step-by-Step Practice The book begins by considering sound propagation through moving media with deterministic inhomogeneities such as vertical profiles of temperature and wind velocity in the atmosphere. It moves on to a new study of sound propagation and scattering in media with random inhomogeneities in adiabatic sound speed, density, and medium velocity. Then this second edition newly sets out state-of-the-art numerical methods for calculating the sound field and its statistical characteristics in moving inhomogeneous media, which is particularly useful for those working in atmospheric acoustics and studying noise pollution. Numerical codes are provided on the book's website www.crcpress.com/product/isbn/9780415564168 Covered in three parts, this second edition: Incorporates new results developed since the previous edition Rewrites and extends the text with formulations of sound propagation and scattering in random moving media Describes numerical methods for performing calculations involving equations from the first two parts Acoustics in Moving Inhomogeneous Media, Second Edition serves as the basis of a graduate course in atmospheric and oceanic acoustics or as a rigorous reference work in a wide range of fields such as atmospheric and oceanic acoustics, aeroacoustics, acoustics of turbulent flows, acoustic remote sensing, noise pollution, and wave propagation in deterministic and random media.
Observing that most books on engineering dynamics left students lacking and failing to grasp the general nature of dynamics in engineering practice, the authors of Dynamics in Engineering Practice, Eleventh Edition focused their efforts on remedying the problem. This text shows readers how to develop and analyze models to predict motion. While establishing dynamics as an evolution of continuous motion, it offers a brief history of dynamics, discusses the SI and US customary unit systems, and combines topics that are typically covered in an introductory and intermediate, or possibly even an advanced dynamics course. It also contains plenty of computer example problems and enough tools to enable readers to fully grasp the subject. A free support book with worked computer examples using MATLAB (R) is available upon request. New in the Eleventh Edition: A large number of problems have been added; specifically, 59 new problems have been included in the original problem sets provided in chapters two through five. Chapter six has been added and covers the application of Lagrange's equations for deriving equations of motion. The new and improved chapters in this text: Address the fundamental requirements of dynamics, including units, force, and mass, and provides a brief history of the development of dynamics Explore the kinematics of a particle, including displacement, velocity, and acceleration in one and two dimensions Cover planar kinetics of rigid bodies, starting with inertia properties and including the mass moment of inertia, the radius of gyration, and the parallel-axis formula Explain how to develop equations of motion for dynamics using Lagrange's equations Dynamics in Engineering Practice, Eleventh Edition shows readers how to develop general kinematic equations and EOMs, analyze systems, and set up and solve equations, using a revolutionary approach to modeling and analysis along with current computer techniques.
This is the first book to present a systematic review of applications of the Haar wavelet method for solving Calculus and Structural Mechanics problems. Haar wavelet-based solutions for a wide range of problems, such as various differential and integral equations, fractional equations, optimal control theory, buckling, bending and vibrations of elastic beams are considered. Numerical examples demonstrating the efficiency and accuracy of the Haar method are provided for all solutions.
This volume comprises the carefully revised papers of the 9th IUTAM Symposium on Laminar-Turbulent Transition, held at the Imperial College, London, UK, in September 2019. The papers focus on the leading research in understanding transition to turbulence, which is a challenging topic of fluid mechanics and arises in many modern technologies as well as in nature. The proceedings are of interest for researchers in fluid mechanics and industry who have to handle these types of problems, such as in the aeronautical sector.
This book discusses efforts to control the low-frequency vibration transmission of typical power equipment and pipeline systems of ships, exploring the use of active and passive hybrid vibration isolation and adjustable dynamic vibration absorption technologies. It also proposes an adaptive feed-forward control strategy and studies a distributed feed-forward control hardware system. In addition, the book presents a three-way dynamic vibration absorption theory used to design a pipeline-system adjustable dynamic vibration absorber, which offers a number of advantages, such as compact structure, easy assembly and disassembly, low power consumption, excellent vibration control effect and wide frequency band adjustable ability, etc. This book is a valuable resource for researchers and engineers in the fields of noise and vibration control, active control systems, active vibration isolation and adaptive dynamic vibration absorption.
This book contains advances on the theory and applications of time-delay systems with particular focus on interconnected systems. The methods for stability analysis and control design are based on time-domain and frequency-domain approaches, for continuous-time and sampled-data systems, linear and nonlinear systems. This volume is a valuable source of reference for control practitioners, graduate students, and scientists researching practical as well as theoretical solutions to a variety of control problems inevitably influenced by the presence of time delays. The contents are organized in three parts: Interconnected Systems analysis, Modeling and and Analysis for Delay systems, and Stabilization and Control Strategies for Delay Systems. This volume presents a selection of 19 contributions presented in the 4th DelSys Workshop which took place in Gif-sur-Yvette, France November 25-27, 2015.
For Dynamics Courses. This package includes MasteringEngineering (R). A Proven Approach to Conceptual Understanding and Problem-solving Skills Engineering Mechanics: Dynamics excels in providing a clear and thorough presentation of the theory and application of engineering mechanics. Engineering Mechanics empowers students to succeed by drawing upon Prof. Hibbeler's everyday classroom experience and his knowledge of how students learn. This text is shaped by the comments and suggestions of hundreds of reviewers in the teaching profession, as well as many of the author's students. The Fourteenth Edition includes new Preliminary Problems, which are intended to help students develop conceptual understanding and build problem-solving skills. The text features a large variety of problems from a broad range of engineering disciplines, stressing practical, realistic situations encountered in professional practice, and having varying levels of difficulty. This package includes MasteringEngineering, an online homework, tutorial, and assessment program designed to work with this text to engage students and improve results. Interactive, self-paced tutorials provide individualized coaching to help students stay on track. With a wide range of activities available, students can actively learn, understand, and retain even the most difficult concepts. MasteringEngineering should only be purchased when required by an instructor. Please be sure you have the correct ISBN and Course ID. Instructors, contact your Pearson representative for more information.
Many scientists and engineers do not realize that, under certain conditions, friction can lead to the formation of new structures at the interface, including in situ tribofilms and various patterns. In turn, these structures-usually formed by destabilization of the stationary sliding regime-can lead to the reduction of friction and wear. Friction-Induced Vibrations and Self-Organization: Mechanics and Non-Equilibrium Thermodynamics of Sliding Contact combines the mechanical and thermodynamic methods in tribology, thus extending the field of mechanical friction-induced vibrations to non-mechanical instabilities and self-organization processes at the frictional interface. The book also relates friction-induced self-organization to novel biomimetic materials, such as self-lubricating, self-cleaning, and self-healing materials. Explore Friction from a Different Angle-as a Fundamental Force of Nature The book begins with an exploration of friction as a fundamental force of nature throughout the history of science. It then introduces general concepts related to vibrations, instabilities, and self-organization in the bulk of materials and at the interface. After presenting the principles of non-equilibrium thermodynamics as they apply to the interface, the book formulates the laws of friction and highlights important implications. The authors also analyze wear and lubrication. They then turn their attention to various types of friction-induced vibration, and practical situations and applications where these vibrations are important. The final chapters consider various types of friction-induced self-organization and how these effects can be used for novel self-lubricating, self-cleaning, and self-healing materials. From Frictional Instabilities to Friction-Induced Self-Organization Drawing on the authors' original research, this book presents a new, twenty-first century perspective on friction and tribology. It shows how friction-induced instabilities and vibrations can lead to self-organized structures, and how understanding the structure-property relationships that lead to self-organization is key to designing "smart" biomimetic materials.
Complex Nonlinearity: Chaos, Phase Transitions, Topology Change and Path Integrals is a book about prediction & control of general nonlinear and chaotic dynamics of high-dimensional complex systems of various physical and non-physical nature and their underpinning geometro-topological change. The book starts with a textbook-like expose on nonlinear dynamics, attractors and chaos, both temporal and spatio-temporal, including modern techniques of chaos-control. Chapter 2 turns to the edge of chaos, in the form of phase transitions (equilibrium and non-equilibrium, oscillatory, fractal and noise-induced), as well as the related field of synergetics. While the natural stage for linear dynamics comprises of flat, Euclidean geometry (with the corresponding calculation tools from linear algebra and analysis), the natural stage for nonlinear dynamics is curved, Riemannian geometry (with the corresponding tools from nonlinear, tensor algebra and analysis). The extreme nonlinearity - chaos - corresponds to the topology change of this curved geometrical stage, usually called configuration manifold. Chapter 3 elaborates on geometry and topology change in relation with complex nonlinearity and chaos. Chapter 4 develops general nonlinear dynamics, continuous and discrete, deterministic and stochastic, in the unique form of path integrals and their action-amplitude formalism. This most natural framework for representing both phase transitions and topology change starts with Feynman's sum over histories, to be quickly generalized into the sum over geometries and topologies. The last Chapter puts all the previously developed techniques together and presents the unified form of complex nonlinearity. Here we have chaos, phase transitions, geometrical dynamics and topology change, all working together in the form of path integrals. The objective of this book is to provide a serious reader with a serious scientific tool that will enable them to actually perform a competitive research in modern complex nonlinearity. It includes a comprehensive bibliography on the subject and a detailed index. Target readership includes all researchers and students of complex nonlinear systems (in physics, mathematics, engineering, chemistry, biology, psychology, sociology, economics, medicine, etc.), working both in industry/clinics and academia.
The rapid evolution of computer science, communication, and information technology has enabled the application of control techniques to systems beyond the possibilities of control theory just a decade ago. Critical infrastructures such as electricity, water, trafficand intermodal transport networks are now in the scope of control engineers. The sheer size of such large-scale systems requires the adoption of advanced distributed control approaches. Distributed model predictive control (MPC) is one of the promising control methodologies for control of such systems. This book provides a state-of-the-art overview of distributed MPC approaches, while at the same time making clear directions of research that deserve more attention. The core and rationale of 35 approaches are carefully explained. Moreover, detailed step-by-step algorithmic descriptions of each approach are provided. These features make the book a comprehensive guide both for those seeking an introduction to distributed MPC as well as for those who want to gain a deeper insight in the wide range of distributed MPC techniques available. "
Humans have always been fascinated with the concept of artificial life and the construction of machines that look and behave like people. As the field of robotics evolves, it demands continuous development of successful systems with high-performance characteristics for practical applications. Advanced Mechanics in Robotic Systems illustrates original and ambitious mechanical designs and techniques for developing new robot prototypes with successful mechanical operational skills. Case studies are focused on projects in mechatronics that have high growth expectations: humanoid robots, robotics hands, mobile robots, parallel manipulators, and human-centred robots. A good control strategy requires good mechanical design, so a chapter has also been devoted to the description of suitable methods for control architecture design. Readers of Advanced Mechanics in Robotic Systems will discover novel designs for relevant applications in robotic fields, that will be of particular interest to academic and industry-based researchers.
This monograph explores the modeling of conservation and balance laws of one-dimensional hyperbolic systems using partial differential equations. It presents typical examples of hyperbolic systems for a wide range of physical engineering applications, allowing readers to understand the concepts in whichever setting is most familiar to them. With these examples, it also illustrates how control boundary conditions may be defined for the most commonly used control devices. The authors begin with the simple case of systems of two linear conservation laws and then consider the stability of systems under more general boundary conditions that may be differential, nonlinear, or switching. They then extend their discussion to the case of nonlinear conservation laws and demonstrate the use of Lyapunov functions in this type of analysis. Systems of balance laws are considered next, starting with the linear variety before they move on to more general cases of nonlinear ones. They go on to show how the problem of boundary stabilization of systems of two balance laws by both full-state and dynamic output feedback in observer-controller form is solved by using a "backstepping" method, in which the gains of the feedback laws are solutions of an associated system of linear hyperbolic PDEs. The final chapter presents a case study on the control of navigable rivers to emphasize the main technological features that may occur in real live applications of boundary feedback control. Stability and Boundary Stabilization of 1-D Hyperbolic Systems will be of interest to graduate students and researchers in applied mathematics and control engineering. The wide range of applications it discusses will help it to have as broad an appeal within these groups as possible.
Diagnosis and correction are critical tasks for the vibrations
engineer. Many causes of rotor vibration are so subtle and
pervasive that excessive vibration continues to occur despite the
use of usually effective design practices and methods of
avoidance.
This book presents select papers presented during the 6th National Symposium on Rotor Dynamics, held at CSIR-NAL, Bangalore, and focuses on the latest trends in rotor dynamics and various challenges encountered in the design of rotating machinery. The book is of interest to researchers from mechanical, aerospace, tribology and power industries, engineering service providers and academics.
This book presents the latest research advances relating to machines and mechanisms. Featuring papers from the XIII International Conference on the Theory of Machines and Mechanisms (TMM 2020), held in Liberec, Czech Republic, on September 7-9, 2021, it includes a selection of the most important new results and developments. The book is divided into five parts, representing a well-balanced overview, and spanning the general theory of machines and mechanisms, through analysis and synthesis of planar and spatial mechanisms, linkages and cams, robots and manipulators, dynamics of machines and mechanisms, rotor dynamics, computational mechanics, vibration and noise in machines, optimization of mechanisms and machines, mechanisms of textile machines, mechatronics and control and monitoring systems of machines. This conference is traditionally held every four years under the auspices of the international organisation IFToMM and the Czech Society for Mechanics.
This is a revised version of the 1984 book of the same name but considerably modified and enlarged to accommodate the developments in recursive estimation and time series analysis that have occurred over the last quarter century. Also over this time, the CAPTAIN Toolbox for recursive estimation and time series analysis has been developed at Lancaster, for use in the MatlabTM software environment (see Appendix G). Consequently, the present version of the book is able to exploit the many computational routines that are contained in this widely available Toolbox, as well as some of the other routines in MatlabTM and its other toolboxes. The book is an introductory one on the topic of recursive estimation and it demonstrates how this approach to estimation, in its various forms, can be an impressive aid to the modelling of stochastic, dynamic systems. It is intended for undergraduate or Masters students who wish to obtain a grounding in this subject; or for practitioners in industry who may have heard of topics dealt with in this book and, while they want to know more about them, may have been deterred by the rather esoteric nature of some books in this challenging area of study. "
After a short introduction to the fundamentals, this book provides a detailed account of major advances in applying fractional calculus to dynamical systems. Fractional order dynamical systems currently continue to gain further importance in many areas of science and engineering. As with many other approaches to mathematical modeling, the first issue to be addressed is the need to couple a definition of the fractional differentiation or integration operator with the types of dynamical systems that are analyzed. As such, for the fundamentals the focus is on basic aspects of fractional calculus, in particular stability analysis, which is required to tackle synchronization in coupled fractional order systems, to understand the essence of estimators for related integer order systems, and to keep track of the interplay between synchronization and parameter observation. This serves as the common basis for the more advanced topics and applications presented in the subsequent chapters, which include an introduction to the 'Immersion and Invariance' (I&I) methodology, the masterslave synchronization scheme for partially known nonlinear fractional order systems, Fractional Algebraic Observability (FAO) and Fractional Generalized quasi-Synchronization (FGqS) to name but a few. This book is intended not only for applied mathematicians and theoretical physicists, but also for anyone in applied science dealing with complex nonlinear systems.
The design and construction of rotating machinery operating at supercritical speeds was, in the 1920s, an event of revolutionary importance for the then new branch of dynamics known as rotor dynamics. In the 1960s, another revolution occurred: In less than a decade, imposed by operational and economic needs, an increase in the power of turbomachinery by one order of magnitude took place. Dynamic analysis of complex rotor forms became a necessity, while the importance of approximate methods for dynamic analysis was stressed. Finally, the emergence of fracture mechanics, as a new branch of applied mechanics, provided analytical tools to investigate crack influence on the dynamic behavior of rotors. The scope of this book is based on all these developments.No topics related to the well-known classical problemsare included, rather the book deals exclusively with modern high-power turbomachinery.
This book describes the teleoperated android Geminoid, which has a very humanlike appearance, movements, and perceptions, requiring unique developmental techniques. The book facilitates understanding of the framework of android science and how to use it in real human societies. Creating body parts of soft material by molding an existing person using a shape-memory form provides not only the humanlike texture of the body surface but also safe physical interaction, that is, humanlike interpersonal interaction between people and the android. The teleoperation also highlights novel effects in telecommunication. Operators of the Geminoid feel the robot's body as their own, and people encountering the teleoperated Geminoid perceive the robot's body as being possessed by the operator as well.Where does the feeling of human presence come from? Can we transfer or reproduce human presence by technology? Geminoid may help to answer these questions.
This volume provides the international multibody dynamics community with an up-to-date view on the state of the art in this rapidly growing field of research which now plays a central role in the modeling, analysis, simulation and optimization of mechanical systems in a variety of fields and for a wide range of industrial applications. This book contains selected contributions delivered at the ECCOMAS Thematic Conference on Multibody Dynamics, which was held in Brussels, Belgium and organized by the Universite catholique de Louvain, from 4th to 7th July 2011. Each paper reflects the State-of-Art in the application of Multibody Dynamics to different areas of engineering. They are enlarged and revised versions of the communications, which were enhanced in terms of self-containment and tutorial quality by the authors. The result is a comprehensive text that constitutes a valuable reference for researchers and design engineers which helps to appraise the potential for the application of multibody dynamics methodologies to a wide range of areas of scientific and engineering relevance. "
Road Vehicle Dynamics: Fundamentals and Modeling with MATLAB (R), Second Edition combines coverage of vehicle dynamics concepts with MATLAB v9.4 programming routines and results, along with examples and numerous chapter exercises. Improved and updated, the revised text offers new coverage of active safety systems, rear wheel steering, race car suspension systems, airsprings, four-wheel drive, mechatronics, and other topics. Based on the lead author's extensive lectures, classes, and research activities, this unique text provides readers with insights into the computer-based modeling of automobiles and other ground vehicles. Instructor resources, including problem solutions, are available from the publisher.
What follows is my personal perspective on early events that played a signi?cant role in the formation of the ?eld now known as Smart Structures. It is by no means meant to be all inclusive or de?nitive in any way, but merely an account of personal experiences that ultimately lead to the development of the material contained and presented herein. On March 23, 1983 then President Ronald Reagan announced his intentions to develop a new system to reduce the threat of nuclear attack and end the strategy of mutual deterrence in an address to the nation entitled, Address to the Nation on Defense and National Security. The system he proposed became known as "Star Wars," after the popular movie, because it was meant to provide a protective shield over the nation from space. His speech mobilized the entire nation on a research and development path toward this end. Investigations were conducted into new areas such as space based radar, large aperture antennae and large ?exible mirror concepts. These proposed systems r- resented an entirely new class of structures that proved to provide new challenges in materials, structures, control systems and modeling. For example antennae needed to monitor large areas of real estate in the continental United States required ap- tures on the order of 100 m.
This volume comprises over 50 contributions resulting from the Ocean Reverberation Symposium, held 25-29 May 1992 in La Spezia, Italy. The contributions are presented in eight sections: Scattering Mechanisms, High Frequency Measurements and Mechanisms, Reverberation Modelling, ARSRP Mid-Atlantic Ridge Experiment, Low Frequency Measurements, Volume Scattering, Signal Processing Issues and Applications. The work addresses the emerging trends in ocean reverberation research. The availability of high-power, low-frequency sources and highly directional arrays has brought with it the tools, and the need, to study long-range reverberation. The use of projector sources and various waveforms, rather than explosives, allows the use of signal processing techniques to enhance the extraction of information about the reverberation and scattering processes. |
You may like...
Resilience Assessment and Evaluation of…
Katinka Wolter, Alberto Avritzer, …
Hardcover
R2,738
Discovery Miles 27 380
A Far-Infrared Spectro-Spatial Space…
Roser Juanola-Parramon
Hardcover
R3,264
Discovery Miles 32 640
Evaluating Websites and Web Services
Denis Yannacopoulos, Panagiotis Manolitzas, …
Hardcover
R5,413
Discovery Miles 54 130
|