![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids > Dynamics & vibration
"Vibrations in Rotating Machinery" provides an opportunity for the reader to be informed of new developments and industrial applications of current trechnology relevant to the vibration of machines and assemblies. The papers included in this volume have been prepared by leading experts from a wide international field including Europe, USA, Australia, Japan, Korea and South America. Covering all aspects of rotating machinery vibration such as: bladed systems; bearings and seals; balancing; condition monitoring and cracked rotors; impacts and rub; identification; theoretical considerations; and active control. "Vibrations in Rotating Machinery" should be of interest to: academics and industrialists associated with research, design and development; and those concerned with solving the practical problems that arise from the design, manufacture and operation of machines, and other rotating assemblies which embody primary rotating elements.
Based on the successful multi-edition book The Physics of Vibrations and Waves by John Pain, the authors carry over the simplicity and logic of the approach taken in the original first edition with its focus on the patterns underlying and connecting so many aspects of physical behavior, whilst bringing the subject up-to-date so it is relevant to teaching in the 21st century. The transmission of energy by wave propagation is a key concept that has applications in almost every branch of physics with transmitting mediums essentially acting as a continuum of coupled oscillators. The characterization of these simple oscillators in terms of three parameters related to the storage, exchange, and dissipation of energy forms the basis of this book. The text moves naturally on from a discussion of basic concepts such as damped oscillations, diffraction and interference to more advanced topics such as transmission lines and attenuation, wave guides, diffusion, Fourier series, and electromagnetic waves in dielectrics and conductors. Throughout the text the emphasis on the underlying principles helps readers to develop their physics insight as an aid to problem solving. This book provides undergraduate students of physics and engineering with the mathematical tools required for full mastery of the concepts. With worked examples presented throughout the text, as well as the Problem sets concluding each chapter, this textbook will enable students to develop their skills and measure their understanding of each topic step-by-step. A companion website is also available, which includes solutions to chapter problems and PowerPoint slides. Review of The Physics of Vibrations and Waves 6e This is an excellent textbook, full of interesting material clearly explained and fully worthy of being studied by future contributors ..." Journal of Sound and Vibration
Complex Nonlinearity: Chaos, Phase Transitions, Topology Change and Path Integrals is a book about prediction & control of general nonlinear and chaotic dynamics of high-dimensional complex systems of various physical and non-physical nature and their underpinning geometro-topological change. The book starts with a textbook-like expose on nonlinear dynamics, attractors and chaos, both temporal and spatio-temporal, including modern techniques of chaos-control. Chapter 2 turns to the edge of chaos, in the form of phase transitions (equilibrium and non-equilibrium, oscillatory, fractal and noise-induced), as well as the related field of synergetics. While the natural stage for linear dynamics comprises of flat, Euclidean geometry (with the corresponding calculation tools from linear algebra and analysis), the natural stage for nonlinear dynamics is curved, Riemannian geometry (with the corresponding tools from nonlinear, tensor algebra and analysis). The extreme nonlinearity - chaos - corresponds to the topology change of this curved geometrical stage, usually called configuration manifold. Chapter 3 elaborates on geometry and topology change in relation with complex nonlinearity and chaos. Chapter 4 develops general nonlinear dynamics, continuous and discrete, deterministic and stochastic, in the unique form of path integrals and their action-amplitude formalism. This most natural framework for representing both phase transitions and topology change starts with Feynman's sum over histories, to be quickly generalized into the sum over geometries and topologies. The last Chapter puts all the previously developed techniques together and presents the unified form of complex nonlinearity. Here we have chaos, phase transitions, geometrical dynamics and topology change, all working together in the form of path integrals. The objective of this book is to provide a serious reader with a serious scientific tool that will enable them to actually perform a competitive research in modern complex nonlinearity. It includes a comprehensive bibliography on the subject and a detailed index. Target readership includes all researchers and students of complex nonlinear systems (in physics, mathematics, engineering, chemistry, biology, psychology, sociology, economics, medicine, etc.), working both in industry/clinics and academia.
The rapid evolution of computer science, communication, and information technology has enabled the application of control techniques to systems beyond the possibilities of control theory just a decade ago. Critical infrastructures such as electricity, water, trafficand intermodal transport networks are now in the scope of control engineers. The sheer size of such large-scale systems requires the adoption of advanced distributed control approaches. Distributed model predictive control (MPC) is one of the promising control methodologies for control of such systems. This book provides a state-of-the-art overview of distributed MPC approaches, while at the same time making clear directions of research that deserve more attention. The core and rationale of 35 approaches are carefully explained. Moreover, detailed step-by-step algorithmic descriptions of each approach are provided. These features make the book a comprehensive guide both for those seeking an introduction to distributed MPC as well as for those who want to gain a deeper insight in the wide range of distributed MPC techniques available. "
This monograph explores the modeling of conservation and balance laws of one-dimensional hyperbolic systems using partial differential equations. It presents typical examples of hyperbolic systems for a wide range of physical engineering applications, allowing readers to understand the concepts in whichever setting is most familiar to them. With these examples, it also illustrates how control boundary conditions may be defined for the most commonly used control devices. The authors begin with the simple case of systems of two linear conservation laws and then consider the stability of systems under more general boundary conditions that may be differential, nonlinear, or switching. They then extend their discussion to the case of nonlinear conservation laws and demonstrate the use of Lyapunov functions in this type of analysis. Systems of balance laws are considered next, starting with the linear variety before they move on to more general cases of nonlinear ones. They go on to show how the problem of boundary stabilization of systems of two balance laws by both full-state and dynamic output feedback in observer-controller form is solved by using a "backstepping" method, in which the gains of the feedback laws are solutions of an associated system of linear hyperbolic PDEs. The final chapter presents a case study on the control of navigable rivers to emphasize the main technological features that may occur in real live applications of boundary feedback control. Stability and Boundary Stabilization of 1-D Hyperbolic Systems will be of interest to graduate students and researchers in applied mathematics and control engineering. The wide range of applications it discusses will help it to have as broad an appeal within these groups as possible.
Humans have always been fascinated with the concept of artificial life and the construction of machines that look and behave like people. As the field of robotics evolves, it demands continuous development of successful systems with high-performance characteristics for practical applications. Advanced Mechanics in Robotic Systems illustrates original and ambitious mechanical designs and techniques for developing new robot prototypes with successful mechanical operational skills. Case studies are focused on projects in mechatronics that have high growth expectations: humanoid robots, robotics hands, mobile robots, parallel manipulators, and human-centred robots. A good control strategy requires good mechanical design, so a chapter has also been devoted to the description of suitable methods for control architecture design. Readers of Advanced Mechanics in Robotic Systems will discover novel designs for relevant applications in robotic fields, that will be of particular interest to academic and industry-based researchers.
Diagnosis and correction are critical tasks for the vibrations
engineer. Many causes of rotor vibration are so subtle and
pervasive that excessive vibration continues to occur despite the
use of usually effective design practices and methods of
avoidance.
After a short introduction to the fundamentals, this book provides a detailed account of major advances in applying fractional calculus to dynamical systems. Fractional order dynamical systems currently continue to gain further importance in many areas of science and engineering. As with many other approaches to mathematical modeling, the first issue to be addressed is the need to couple a definition of the fractional differentiation or integration operator with the types of dynamical systems that are analyzed. As such, for the fundamentals the focus is on basic aspects of fractional calculus, in particular stability analysis, which is required to tackle synchronization in coupled fractional order systems, to understand the essence of estimators for related integer order systems, and to keep track of the interplay between synchronization and parameter observation. This serves as the common basis for the more advanced topics and applications presented in the subsequent chapters, which include an introduction to the 'Immersion and Invariance' (I&I) methodology, the masterslave synchronization scheme for partially known nonlinear fractional order systems, Fractional Algebraic Observability (FAO) and Fractional Generalized quasi-Synchronization (FGqS) to name but a few. This book is intended not only for applied mathematicians and theoretical physicists, but also for anyone in applied science dealing with complex nonlinear systems.
This book presents select papers presented during the 6th National Symposium on Rotor Dynamics, held at CSIR-NAL, Bangalore, and focuses on the latest trends in rotor dynamics and various challenges encountered in the design of rotating machinery. The book is of interest to researchers from mechanical, aerospace, tribology and power industries, engineering service providers and academics.
This book presents the latest research advances relating to machines and mechanisms. Featuring papers from the XIII International Conference on the Theory of Machines and Mechanisms (TMM 2020), held in Liberec, Czech Republic, on September 7-9, 2021, it includes a selection of the most important new results and developments. The book is divided into five parts, representing a well-balanced overview, and spanning the general theory of machines and mechanisms, through analysis and synthesis of planar and spatial mechanisms, linkages and cams, robots and manipulators, dynamics of machines and mechanisms, rotor dynamics, computational mechanics, vibration and noise in machines, optimization of mechanisms and machines, mechanisms of textile machines, mechatronics and control and monitoring systems of machines. This conference is traditionally held every four years under the auspices of the international organisation IFToMM and the Czech Society for Mechanics.
This is a revised version of the 1984 book of the same name but considerably modified and enlarged to accommodate the developments in recursive estimation and time series analysis that have occurred over the last quarter century. Also over this time, the CAPTAIN Toolbox for recursive estimation and time series analysis has been developed at Lancaster, for use in the MatlabTM software environment (see Appendix G). Consequently, the present version of the book is able to exploit the many computational routines that are contained in this widely available Toolbox, as well as some of the other routines in MatlabTM and its other toolboxes. The book is an introductory one on the topic of recursive estimation and it demonstrates how this approach to estimation, in its various forms, can be an impressive aid to the modelling of stochastic, dynamic systems. It is intended for undergraduate or Masters students who wish to obtain a grounding in this subject; or for practitioners in industry who may have heard of topics dealt with in this book and, while they want to know more about them, may have been deterred by the rather esoteric nature of some books in this challenging area of study. "
The design and construction of rotating machinery operating at supercritical speeds was, in the 1920s, an event of revolutionary importance for the then new branch of dynamics known as rotor dynamics. In the 1960s, another revolution occurred: In less than a decade, imposed by operational and economic needs, an increase in the power of turbomachinery by one order of magnitude took place. Dynamic analysis of complex rotor forms became a necessity, while the importance of approximate methods for dynamic analysis was stressed. Finally, the emergence of fracture mechanics, as a new branch of applied mechanics, provided analytical tools to investigate crack influence on the dynamic behavior of rotors. The scope of this book is based on all these developments.No topics related to the well-known classical problemsare included, rather the book deals exclusively with modern high-power turbomachinery.
This book describes the teleoperated android Geminoid, which has a very humanlike appearance, movements, and perceptions, requiring unique developmental techniques. The book facilitates understanding of the framework of android science and how to use it in real human societies. Creating body parts of soft material by molding an existing person using a shape-memory form provides not only the humanlike texture of the body surface but also safe physical interaction, that is, humanlike interpersonal interaction between people and the android. The teleoperation also highlights novel effects in telecommunication. Operators of the Geminoid feel the robot's body as their own, and people encountering the teleoperated Geminoid perceive the robot's body as being possessed by the operator as well.Where does the feeling of human presence come from? Can we transfer or reproduce human presence by technology? Geminoid may help to answer these questions.
This volume provides the international multibody dynamics community with an up-to-date view on the state of the art in this rapidly growing field of research which now plays a central role in the modeling, analysis, simulation and optimization of mechanical systems in a variety of fields and for a wide range of industrial applications. This book contains selected contributions delivered at the ECCOMAS Thematic Conference on Multibody Dynamics, which was held in Brussels, Belgium and organized by the Universite catholique de Louvain, from 4th to 7th July 2011. Each paper reflects the State-of-Art in the application of Multibody Dynamics to different areas of engineering. They are enlarged and revised versions of the communications, which were enhanced in terms of self-containment and tutorial quality by the authors. The result is a comprehensive text that constitutes a valuable reference for researchers and design engineers which helps to appraise the potential for the application of multibody dynamics methodologies to a wide range of areas of scientific and engineering relevance. "
Providing previously unavailable material in sound quality crucial for a more effective design process, this compact reference presents all aspects of product sound quality, such as "rules of thumb" and design formulas and charts. Prevent customer dissatisfaction and design more successful products. Redefining and expanding sound concerns beyond the limits of "noise control," Designing for Product Sound Quality progresses from introductions and definitions on product sound quality and sound radiation to targeting, resolving, and testing design features. Features illustrations on every page Emphasizing that anticipating product operations that produce sound can be an asset in design planning, this monograph defines the terminology and characteristics most relevant to design demonstrates how to conduct and interpret jury tests/listening panels discusses structural responses to noise energy and resonant modes applies concepts to the mechanisms of cams, gears, chains, and sprockets highlights the importance of the single DOF system supplies numerous examples from actual design cases prescribes production line diagnostics for detecting faults and much more Supplemented with over 220 drawings, photographs, equations, and tables, Designing for Product Sound Quality is an essential tool for mechanical, design, manufacturing, industrial, and acoustical engineers; acoustical physicists; and upper-level undergraduate and graduate students in these disciplines.
This important reference describes the latest techniques and real-life applications of computational fluid dynamics (CFD) and heat transfer in aeronautics, materials processing and manufacturing, electronic cooling, and environmental control. Includes new material from experienced researchers in the field Complete with detailed equations for fluid flow and heat transfer, Applied Computational Fluid Dynamics provides a state-of-the-art review of dynamic and thermal turbulence modeling discusses the impact of unsteadiness in turbine flows for the first time in book form reviews numerical results of modeling plastic extrusion, optical fiber drawing, casting, and heat treatment highlights methods and codes for grid generation describes CFD's role in improving aircraft engine efficiency, air quality control, and electronic cooling rates for the first time in a single source points the way toward solutions for acid deposition, global climate warming, and related dilemmas resolves practical problems for inlet, duct, and nozzle flows elucidates the thermal design of computer components, along with passive thermal control techniques and more Featuring more than 500 figures and equations as well as case studies, Applied Computational Fluid Dynamics serves as an excellent reference for mechanical, chemical, civil, lubrication, automotive, heat transfer, aerospace, industrial, materials process, environmental, marine, and fluid dynamics engineers; electronic product, thermal, and turbomachinery designers; materials scientists; computational physicists; and graduate students in these disciplines.
What follows is my personal perspective on early events that played a signi?cant role in the formation of the ?eld now known as Smart Structures. It is by no means meant to be all inclusive or de?nitive in any way, but merely an account of personal experiences that ultimately lead to the development of the material contained and presented herein. On March 23, 1983 then President Ronald Reagan announced his intentions to develop a new system to reduce the threat of nuclear attack and end the strategy of mutual deterrence in an address to the nation entitled, Address to the Nation on Defense and National Security. The system he proposed became known as "Star Wars," after the popular movie, because it was meant to provide a protective shield over the nation from space. His speech mobilized the entire nation on a research and development path toward this end. Investigations were conducted into new areas such as space based radar, large aperture antennae and large ?exible mirror concepts. These proposed systems r- resented an entirely new class of structures that proved to provide new challenges in materials, structures, control systems and modeling. For example antennae needed to monitor large areas of real estate in the continental United States required ap- tures on the order of 100 m.
This book presents the most recent trends and concepts in power engineering, especially with regard to prosumer and civic energy generation. In so doing, it draws widely on his experience gained during the development of steam microturbines for use in small combined heat and power stations based on the organic Rankine cycle (CHP-ORC). Major issues concerning the dynamic properties of mechanical systems, in particular rotating systems, are discussed, and the results obtained when using unconventional bearing systems, presented. Modeling and analysis of radial-flow and axial-flow microturbines are addressed in detail, covering rotor analysis with different bearing systems, simulation modal analysis, and stress analysis. Furthermore, experimental studies of the dynamic properties of microturbine elements are extensively described. Interest in distributed generation and CHP-ORC is growing rapidly, and the potential market for such systems promises to be very large. This book will be of value for engineers and scientists involved in the design, modeling, operation, and diagnostics of various types of turbomachinery, especially steam microturbines.
This volume comprises over 50 contributions resulting from the Ocean Reverberation Symposium, held 25-29 May 1992 in La Spezia, Italy. The contributions are presented in eight sections: Scattering Mechanisms, High Frequency Measurements and Mechanisms, Reverberation Modelling, ARSRP Mid-Atlantic Ridge Experiment, Low Frequency Measurements, Volume Scattering, Signal Processing Issues and Applications. The work addresses the emerging trends in ocean reverberation research. The availability of high-power, low-frequency sources and highly directional arrays has brought with it the tools, and the need, to study long-range reverberation. The use of projector sources and various waveforms, rather than explosives, allows the use of signal processing techniques to enhance the extraction of information about the reverberation and scattering processes.
The EUCOMES08, Second European Conference on Mechanism Science is the second event of a series that has been started in 2006 as a conference activity for an European community working in Mechanism Science. The ?rst event was held in Obergurgl, Austria in 2006. This year EUCOMES08 Conference has come to Cassino in Italy taking place from 17 to 20 September 2008. TheaimoftheEUCOMESConference istobringtogetherEuropean researchers, industry professionals and students from the broad ranges of disciplines referring to Mechanism Science, in an intimate, collegial and stimulating environment. In this second event we have received an increased attention to the initiative, as canbeseenbythefactthattheEUCOMES08Proceedingswillcontaincontributions by authors even from all around the world. This means also that there is a really interest to have not only a conference frame but even a need of aggregation for an European Community well identi?ed in Mechanism Science with the aim to strengthen common views and collaboration activities among European researchers and institutions. I believe that a reader will take advantage of the papers in these Proceedings with further satisfaction and motivation for her or his work. These papers cover the wide ?eld of the Mechanism Science. The program of EUCOMES08 Conference has included technical sessions with oral presentations, which, together with informal conversations during the social program, have enabled to offer wide opportunities to share experiences and discuss scienti?c achievements and current trends in the areas encompassed by the EUCOMES08 conference.
The most comprehensive book on electroacoustic transducers and arrays for underwater sound Includes transducer modeling techniques and transducer designs that are currently in use Includes discussion and analysis of array interaction and nonlinear effects in transducers Contains extensive data in figures and tables needed in transducer and array design Written at a level that will be useful to students as well as to practicing engineers and scientists
Suitable for both individual and group learning, Engineering Acoustics focuses on basic concepts and methods to make our environments quieter, both in buildings and in the open air. The author s tutorial style derives from the conviction that understanding is enhanced when the necessity behind the particular teaching approach is made clear. He also combines mathematical derivations and formulas with extensive explanations and examples to deepen comprehension. Fundamental chapters on the physics and perception of sound precede those on noise reduction (elastic isolation) methods. The last chapter deals with microphones and loudspeakers. Moeser includes major discoveries by Lothar Cremer, including the optimum impedance for mufflers and the coincidence effect behind structural acoustic transmission. The appendix gives a short introduction on the use of complex amplitudes in acoustics. "
Continuous-system simulation is an increasingly important tool for optimizing the performance of real-world systems. The book presents an integrated treatment of continuous simulation with all the background and essential prerequisites in one setting. It features updated chapters and two new sections on Black Swan and the Stochastic Information Packet (SIP) and Stochastic Library Units with Relationships Preserved (SLURP) Standard. The new edition includes basic concepts, mathematical tools, and the common principles of various simulation models for different phenomena, as well as an abundance of case studies, real-world examples, homework problems, and equations to develop a practical understanding of concepts. |
You may like...
Reference for Modern Instrumentation…
R.N. Thurston, Allan D. Pierce
Hardcover
R3,460
Discovery Miles 34 600
Advanced H Control - Towards Nonsmooth…
Yury V. Orlov, Luis T. Aguilar
Hardcover
Geodetic Sciences - Theory, Applications…
Bihter Erol, Serdar Erol
Hardcover
R3,077
Discovery Miles 30 770
Inerter and Its Application in Vibration…
Michael Z. Q. Chen, Yinlong Hu
Hardcover
R4,011
Discovery Miles 40 110
Vibration of Functionally Graded Beams…
Snehashish Chakraverty, Karan Kumar Pradhan
Paperback
Active Control of Vibration
Christopher C. Fuller, S.J. Elliott, …
Paperback
Reference for Modern Instrumentation…
R.N. Thurston, Allan D. Pierce
Hardcover
R4,086
Discovery Miles 40 860
|