![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids > Dynamics & vibration
This book starts with a short recapitulation on basic concepts, common to any types of robots (serial, tree structure, parallel, etc.), that are also necessary for computation of the dynamic models of parallel robots. Then, as dynamics requires the use of geometry and kinematics, the general equations of geometric and kinematic models of parallel robots are given. After, it is explained that parallel robot dynamic models can be obtained by decomposing the real robot into two virtual systems: a tree-structure robot (equivalent to the robot legs for which all joints would be actuated) plus a free body corresponding to the platform. Thus, the dynamics of rigid tree-structure robots is analyzed and algorithms to obtain their dynamic models in the most compact form are given. The dynamic model of the real rigid parallel robot is obtained by closing the loops through the use of the Lagrange multipliers. The problem of the dynamic model degeneracy near singularities is treated and optimal trajectory planning for crossing singularities is proposed. Lastly, the approach is extended to flexible parallel robots and the algorithms for computing their symbolic model in the most compact form are given. All theoretical developments are validated through experiments.
Experimental Techniques, Rotating Machinery & Acoustics, Volume 8: Proceedings of the 33rd IMAC, A Conference and Exposition on Structural Dynamics, 2015, the eighth volume of ten from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on:  Experimental Techniques Processing Modal Data Rotating Machinery Acoustics Adaptive Structures Biodynamics Damping
This book provides a general overview of several concepts of synchronization and brings together related approaches to secure communication in chaotic systems. This is achieved using a combination of analytic, algebraic, geometrical and asymptotical methods to tackle the dynamical feedback stabilization problem. In particular, differential-geometric and algebraic differential concepts reveal important structural properties of chaotic systems and serve as guide for the construction of design procedures for a wide variety of chaotic systems. The basic differential algebraic and geometric concepts are presented in the first few chapters in a novel way as design tools, together with selected experimental studies demonstrating their importance. The subsequent chapters treat recent applications. Written for graduate students in applied physical sciences, systems engineers, and applied mathematicians interested in synchronization of chaotic systems and in secure communications, this self-contained text requires only basic knowledge of integer ordinary and fractional ordinary differential equations. Design applications are illustrated with the help of several physical models of practical interest.
This book develops a uniform accurate method which is capable of dealing with vibrations of laminated beams, plates and shells with arbitrary boundary conditions including classical boundaries, elastic supports and their combinations. It also provides numerous solutions for various configurations including various boundary conditions, laminated schemes, geometry and material parameters, which fill certain gaps in this area of reach and may serve as benchmark solutions for the readers. For each case, corresponding fundamental equations in the framework of classical and shear deformation theory are developed. Following the fundamental equations, numerous free vibration results are presented for various configurations including different boundary conditions, laminated sequences and geometry and material properties. The proposed method and corresponding formulations can be readily extended to static analysis.
The topics addressed in this book cover the whole range of kinematic analysis, synthesis and design and consider robotic systems possessing serial, parallel and cable driven mechanisms. The robotic systems range from being less than fully mobile to kinematically redundant to over constrained. The fifty-six contributions report the latest results in robot kinematics with emphasis on emerging areas such as design and control of humanoids or humanoid subsystems. The book is of interest to researchers wanting to bring their knowledge up to date regarding modern topics in one of the basic disciplines in robotics, which relates to the essential property of robots, the motion of mechanisms.
This fourth volume of eight from the IMAC - XXXII Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on: Linear Systems Substructure Modelling Adaptive Structures Experimental Techniques Analytical Methods Damage Detection Damping of Materials & Members Modal Parameter Identification Modal Testing Methods System Identification Active Control Modal Parameter Estimation Processing Modal Data
This text is a short yet complete course on nonlinear dynamics of deterministic systems. Conceived as a modular set of 15 concise lectures it reflects the many years of teaching experience by the authors. The lectures treat in turn the fundamental aspects of the theory of dynamical systems, aspects of stability and bifurcations, the theory of deterministic chaos and attractor dimensions, as well as the elements of the theory of Poincare recurrences.Particular attention is paid to the analysis of the generation of periodic, quasiperiodic and chaotic self-sustained oscillations and to the issue of synchronization in such systems. This book is aimed at graduate students and non-specialist researchers with a background in physics, applied mathematics and engineering wishing to enter this exciting field of research.
This fifth volume of eight from the IMAC - XXXII Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on: Linear Systems Substructure Modelling Adaptive Structures Experimental Techniques Analytical Methods Damage Detection Damping of Materials & Members Modal Parameter Identification Modal Testing Methods System Identification Active Control Modal Parameter Estimation Processing Modal Data
The 5th International Congress on Design and Modeling of Mechanical Systems (CMSM) was held in Djerba, Tunisia on March 25-27, 2013 and followed four previous successful editions, which brought together international experts in the fields of design and modeling of mechanical systems, thus contributing to the exchange of information and skills and leading to a considerable progress in research among the participating teams. The fifth edition of the congress (CMSM2013), organized by the Unit of Mechanics, Modeling and Manufacturing (U2MP) of the National School of Engineers of Sfax, Tunisia, the Mechanical Engineering Laboratory (MBL) of the National School of Engineers of Monastir, Tunisia and the Mechanics Laboratory of Sousse (LMS) of the National School of Engineers of Sousse, Tunisia, saw a significant increase of the international participation. This edition brought together nearly 300 attendees who exposed their work on the following topics: mechatronics and robotics, dynamics of mechanical systems, fluid structure interaction and vibroacoustics, modeling and analysis of materials and structures, design and manufacturing of mechanical systems. This book is the proceedings of CMSM2013 and contains a careful selection of high quality contributions, which were exposed during various sessions of the congress. The original articles presented here provide an overview of recent research advancements accomplished in the field mechanical engineering.
This second volume of eight from the IMAC - XXXII Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on: Linear Systems Substructure Modelling Adaptive Structures Experimental Techniques Analytical Methods Damage Detection Damping of Materials & Members Modal Parameter Identification Modal Testing Methods System Identification Active Control Modal Parameter Estimation Processing Modal Data
Underactuated multibody systems are intriguing mechatronic systems, as they posses fewer control inputs than degrees of freedom. Some examples are modern light-weight flexible robots and articulated manipulators with passive joints. This book investigates such underactuated multibody systems from an integrated perspective. This includes all major steps from the modeling of rigid and flexible multibody systems, through nonlinear control theory, to optimal system design. The underlying theories and techniques from these different fields are presented using a self-contained and unified approach and notation system. Subsequently, the book focuses on applications to large multibody systems with multiple degrees of freedom, which require a combination of symbolical and numerical procedures. Finally, an integrated, optimization-based design procedure is proposed, whereby both structural and control design are considered concurrently. Each chapter is supplemented by illustrated examples.
The articles in this volume present the state-of-the-art in noise prediction, modeling and measurement. The articles are partially based on class notes provided during the course `Noise sources in turbulent shear flows', given at CISM on April 2011. The first part contains general concepts of aero acoustics, including vortex sound theory and acoustic analogies, in the second part particular emphasis is put into arguments of interest for engineers and relevant for aircraft design: jet noise, airfoil broadband noise, boundary layer noise (including interior noise and its control) and the concept of noise sources, their theoretical modeling and identification in turbulent lows. All these arguments are treated extensively with the inclusion of many practical examples and references to engineering applications.
It is well established that the sliding mode control strategy provides an effective and robust method of controlling the deterministic system due to its well-known invariance property to a class of bounded disturbance and parameter variations. Advances in microcomputer technologies have made digital control increasingly popular among the researchers worldwide. And that led to the study of discrete-time sliding mode control design and its implementation. This brief presents, a method for multi-rate frequency shaped sliding mode controller design based on switching and non-switching type of reaching law. In this approach, the frequency dependent compensator dynamics are introduced through a frequency-shaped sliding surface by assigning frequency dependent weighing matrices in a linear quadratic regulator (LQR) design procedure. In this way, the undesired high frequency dynamics or certain frequency disturbance can be eliminated. The states are implicitly obtained by measuring the output at a faster rate than the control. It is also known that the vibration control of smart structure is a challenging problem as it has several vibratory modes. So, the frequency shaping approach is used to suppress the frequency dynamics excited during sliding mode in smart structure. The frequency content of the optimal sliding mode is shaped by using a frequency dependent compensator, such that a higher gain can be obtained at the resonance frequencies. The brief discusses the design methods of the controllers based on the proposed approach for the vibration suppression of the intelligent structure. The brief also presents a design of discrete-time reduced order observer using the duality to discrete-time sliding surface design. First, the duality between the coefficients of the discrete-time reduced order observer and the sliding surface design is established and then, the design method for the observer using Riccati equation is explained. Using the proposed method, the observer for the Power System Stabilizer (PSS) for Single Machine Infinite Bus (SMIB) system is designed and the simulation is carried out using the observed states. The discrete-time sliding mode controller based on the proposed reduced order observer design method is also obtained for a laboratory experimental servo system and verified with the experimental results.
The aim of the book is to be a reference book in automotive technology, as far as automotive chassis (i.e. everything that is inside a vehicle except the engine and the body) is concerned. The book is a result of a decade of work heavily sponsored by the FIAT group (who supplied material, together with other automotive companies, and sponsored the work). The first volume deals with the design of automotive components and the second volume treats the various aspects of the design of a vehicle as a system.
Topics in Experimental Dynamics Substructuring, Volume 2: Proceedings of the 31st IMAC, A Conference and Exposition on Structural Dynamics, 2013, the second volume of seven from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on: Nonlinear Substructures SEM Substructures Wind Turbine Testbed - Blade Modeling & Correlation Substructure Methods SEM Substructures Wind Turbine Testbed Frequency Based Substructures Fixed Base Substructure Methods Substructure Methods SEM Substructures Wind Turbine Testbed Frequency Based Substructures Fixed Base Substructure Methods
The volume contains 19 contributions by international experts in the field of multibody system dynamics, robotics and control. The book aims to bridge the gap between the modeling of mechanical systems by means of multibody dynamics formulations and robotics. In the classical approach, a multibody dynamics model contains a very high level of detail, however, the application of such models to robotics or control is usually limited. The papers aim to connect the different scientific communities in multibody dynamics, robotics and control. Main topics are flexible multibody systems, humanoid robots, elastic robots, nonlinear control, optimal path planning, and identification.
The book combines vehicle systems dynamics with the latest theoretical developments in dynamics of non-smooth systems and numerical analysis of differential-algebraic dynamical systems with discontinuities. These two fields are fundamental for the modelling and analysis of vehicle dynamical sytems. The results are also applicable to other non-smooth dynamical systems.
Model-Based Control will be a collection of state-of-the-art contributions in the field of modelling, identification, robust control and optimization of dynamical systems, with particular attention to the application domains of motion control systems (high-accuracy positioning systems) and large scale industrial process control systems.The book will be directed to academic and industrial people involved in research in systems and control, industrial process control and mechatronics.
The interest of the applied mechanics community in chaotic dynamics of engineering systems has exploded in the last fifteen years, although research activity on nonlinear dynamical problems in mechanics started well before the end of the Eighties. It developed first within the general context of the classical theory of nonlinear oscillations, or nonlinear vibrations, and of the relevant engineering applications. This was an extremely fertile field in terms of formulation of mechanical and mathematical models, of development of powerful analytical techniques, and of understanding of a number of basic nonlinear phenomena. At about the same time, meaningful theoretical results highlighting new solution methods and new or complex phenomena in the dynamics of deterministic systems were obtained within dynamical systems theory by means of sophisticated geometrical and computational techniques. In recent years, careful experimental studies have been made to establish the actual occurrence and observability of the predicted dynamic phenomena, as it is vitally needed in all engineering fields. Complex dynamics have been shown to characterize the behaviour of a great number of nonlinear mechanical systems, ranging from aerospace engineering applications to naval applications, mechanical engineering, structural engineering, robotics and biomechanics, and other areas. The International Union of Theoretical and Applied Mechanics grasped the importance of such complex phenomena in the Eighties, when the first IUTAM Symposium devoted to the general topic of nonlinear and chaotic dynamics in applied mechanics and engineering was held in Stuttgart (1989).
Suitable for both individual and group learning, Engineering Acoustics focuses on basic concepts and methods to make our environments quieter, both in buildings and in the open air. The author's tutorial style derives from the conviction that understanding is enhanced when the necessity behind the particular teaching approach is made clear. He also combines mathematical derivations and formulas with extensive explanations and examples to deepen comprehension. Fundamental chapters on the physics and perception of sound precede those on noise reduction (elastic isolation) methods. The last chapter deals with microphones and loudspeakers. Moeser includes major discoveries by Lothar Cremer, including the optimum impedance for mufflers and the coincidence effect behind structural acoustic transmission. The appendix gives a short introduction on the use of complex amplitudes in acoustics.
The most important characteristic of the "world filled with nonlinearity" is the existence of scale interference: disparate space-time scales interfere with each other. Thus, the effects of unknowable scales invade the world that we can observe directly. This leads to various peculiar phenomena such as chaos, critical phenomena, and complex biological phenomena, among others. Conceptual analysis and phenomenology are the keys to describe and understand phenomena that are subject to scale interference, because precise description of unfamiliar phenomena requires precise concepts and their phenomenological description. The book starts with an illustration of conceptual analysis in terms of chaos and randomness, and goes on to explain renormalization group philosophy as an approach to phenomenology. Then, abduction is outlined as a way to express what we have understood about the world. The book concludes with discussions on how we can approach genuinely complex phenomena, including biological phenomena. The main target of this volume is young people who have just started to appreciate the world seriously. The author also wishes the book to be helpful to those who have been observing the world, but who wish to appreciate it afresh from a different angle.
The book provides personal memories along with description of scientific works written by ex-graduate students and research associates of the late Professor Glass. The described research work covers a wide range of shock wave phenomena, resulting from seeds planted by Professor Glass. Professor Glass was born in Poland in 1918. He immigrated together with his parents to Canada at the age of 12 and received all his professional education at the University of Toronto, Canada. He became a world recognized expert in shock wave phenomena, and during his 45 years of active research he supervised more than 125 master and doctoral students, post-doctoral fellows and visiting research associates. In this book seven of his past students/research-associates describe their personal memories of Professor Glass and present some of their investigations in shock wave phenomena which sprung from their past work with Professor Glass. Specifically, these investigations include underwater shock waves, shock/bubble interaction, medical applications of shock wave, various types of shock tubes and shock tube techniques, shock wave attenuation and different types of shock wave reflections.
This volume provides the international multibody dynamics community with an up-to-date view on the state of the art in this rapidly growing field of research which now plays a central role in the modeling, analysis, simulation and optimization of mechanical systems in a variety of fields and for a wide range of industrial applications. This book contains selected contributions delivered at the ECCOMAS Thematic Conference on Multibody Dynamics, which was held in Brussels, Belgium and organized by the Universite catholique de Louvain, from 4th to 7th July 2011. Each paper reflects the State-of-Art in the application of Multibody Dynamics to different areas of engineering. They are enlarged and revised versions of the communications, which were enhanced in terms of self-containment and tutorial quality by the authors. The result is a comprehensive text that constitutes a valuable reference for researchers and design engineers which helps to appraise the potential for the application of multibody dynamics methodologies to a wide range of areas of scientific and engineering relevance.
Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration prediction of hydraulic machinery.
The ?rst International Meeting of Advances in Robot Kinematics, ARK, occurred in September 1988, by invitation to Ljubljana, Slovenia, of a group of 20 int- nationally recognized researchers, representing six different countries from three continents. There were 22 lectures and approximately 150 attendees. This success of bringing together excellent research and the international community, led to the formation of a Scienti?c Committee and the decision to repeat the event biannually. The meeting was made open to all individuals with a critical peer review process of submitted papers. The meetings have since been continuously supported by the Jozef ? Stefan Institute and since 1992 have come under patronage of the Inter- tionalFederationforthePromotionofMechanismandMachineScience(IFToMM). Springer published the ?rst book of the series in 1991 and since 1994 Kluwer and Springer have published a book of the presented papers every two years. The papers in this book present the latest topics and methods in the kinem- ics, control and design of robotic manipulators. They consider the full range of - botic systems, including serial, parallel and cable driven manipulators, both planar and spatial. The systems range from being less than fully mobile to kinematically redundant to overconstrained. The meeting included recent advances in emerging areas such as the design and control of humanoids and humanoid subsystems, the analysis, modeling and simulation of human body motion, the mobility analysis of protein molecules and the development of systems which integrate man and - chine. |
You may like...
Design for the Unexpected - From Holonic…
Paul Valckenaers, Hendrik Van Brussel
Paperback
R2,812
Discovery Miles 28 120
Reference for Modern Instrumentation…
R.N. Thurston, Allan D. Pierce
Hardcover
R4,086
Discovery Miles 40 860
Reference for Modern Instrumentation…
R.N. Thurston, Allan D. Pierce
Hardcover
R3,460
Discovery Miles 34 600
Active Control of Vibration
Christopher C. Fuller, S.J. Elliott, …
Paperback
Rotating Machinery and Signal Processing…
Ahmed Felkaoui, Fakher Chaari, …
Hardcover
R4,327
Discovery Miles 43 270
Geodetic Sciences - Theory, Applications…
Bihter Erol, Serdar Erol
Hardcover
R3,077
Discovery Miles 30 770
|