![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids > Dynamics & vibration
Dynamics and Vibration: An Introduction is a textbook to support Dynamics and Vibration modules across a wide range of undergraduate engineering courses from first year to final year including civil, mechanical, aerospace and medical engineering. The unique DAMA software, included as a free online resource, generates computer simulations that provide students with a new way to visualise the motion of mechanisms and vibrating systems. By varying the input and output parameters of the simulations themselves, students can clearly see and understand the effects of system changes. Dynamics and Vibration: An Introduction is well structured and easy to understand, with a wealth of examples and tutorial questions. It offers lecutres and student of Dynamics and Vibration a practical and concise resource specifically for their needs. Topics covered include: motion of particles and rigid bodies with and without reference to masses and forces (Kinematics and Kinetics) including motion of wheels, gears, linkages and mechanisms; balancing of machines including rotating masses and multi-cylinder engines; free and forced vibration of a single degree of freedom (mass, a spring and a damper) including damped, damped systems and vibration isolators; free and forced vibration of two-degree of freedom systems including vibration of bars and lateral vibration absorbers; vibration of continuous systems including lateral vibration of cables, longitudinal vibration of bars and lateral vibration of beams using analytical solution and Finite Element Method.
Topics in Modal Analysis, Volume 7: Proceedings of the 31st IMAC, A Conference and Exposition on Structural Dynamics, 2013, the seventh volume of seven from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on: Fluid Structure Interaction Adaptive Structures Experimental Techniques Analytical Methods Damage Detection Damping of Materials & Members Modal Parameter Identification Modal Testing Methods System Identification Active Control Modal Parameter Estimation Processing Modal Data
The aim of the book is to be a reference book in automotive technology, as far as automotive chassis (i.e. everything that is inside a vehicle except the engine and the body) is concerned. The book is a result of a decade of work heavily sponsored by the FIAT group (who supplied material, together with other automotive companies, and sponsored the work). The first volume deals with the design of automotive components and the second volume treats the various aspects of the design of a vehicle as a system.
It is well established that the sliding mode control strategy provides an effective and robust method of controlling the deterministic system due to its well-known invariance property to a class of bounded disturbance and parameter variations. Advances in microcomputer technologies have made digital control increasingly popular among the researchers worldwide. And that led to the study of discrete-time sliding mode control design and its implementation. This brief presents, a method for multi-rate frequency shaped sliding mode controller design based on switching and non-switching type of reaching law. In this approach, the frequency dependent compensator dynamics are introduced through a frequency-shaped sliding surface by assigning frequency dependent weighing matrices in a linear quadratic regulator (LQR) design procedure. In this way, the undesired high frequency dynamics or certain frequency disturbance can be eliminated. The states are implicitly obtained by measuring the output at a faster rate than the control. It is also known that the vibration control of smart structure is a challenging problem as it has several vibratory modes. So, the frequency shaping approach is used to suppress the frequency dynamics excited during sliding mode in smart structure. The frequency content of the optimal sliding mode is shaped by using a frequency dependent compensator, such that a higher gain can be obtained at the resonance frequencies. The brief discusses the design methods of the controllers based on the proposed approach for the vibration suppression of the intelligent structure. The brief also presents a design of discrete-time reduced order observer using the duality to discrete-time sliding surface design. First, the duality between the coefficients of the discrete-time reduced order observer and the sliding surface design is established and then, the design method for the observer using Riccati equation is explained. Using the proposed method, the observer for the Power System Stabilizer (PSS) for Single Machine Infinite Bus (SMIB) system is designed and the simulation is carried out using the observed states. The discrete-time sliding mode controller based on the proposed reduced order observer design method is also obtained for a laboratory experimental servo system and verified with the experimental results.
Topics in Experimental Dynamics Substructuring, Volume 2: Proceedings of the 31st IMAC, A Conference and Exposition on Structural Dynamics, 2013, the second volume of seven from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on: Nonlinear Substructures SEM Substructures Wind Turbine Testbed - Blade Modeling & Correlation Substructure Methods SEM Substructures Wind Turbine Testbed Frequency Based Substructures Fixed Base Substructure Methods Substructure Methods SEM Substructures Wind Turbine Testbed Frequency Based Substructures Fixed Base Substructure Methods
What follows is my personal perspective on early events that played a signi?cant role in the formation of the ?eld now known as Smart Structures. It is by no means meant to be all inclusive or de?nitive in any way, but merely an account of personal experiences that ultimately lead to the development of the material contained and presented herein. On March 23, 1983 then President Ronald Reagan announced his intentions to develop a new system to reduce the threat of nuclear attack and end the strategy of mutual deterrence in an address to the nation entitled, Address to the Nation on Defense and National Security. The system he proposed became known as "Star Wars," after the popular movie, because it was meant to provide a protective shield over the nation from space. His speech mobilized the entire nation on a research and development path toward this end. Investigations were conducted into new areas such as space based radar, large aperture antennae and large ?exible mirror concepts. These proposed systems r- resented an entirely new class of structures that proved to provide new challenges in materials, structures, control systems and modeling. For example antennae needed to monitor large areas of real estate in the continental United States required ap- tures on the order of 100 m.
The book combines vehicle systems dynamics with the latest theoretical developments in dynamics of non-smooth systems and numerical analysis of differential-algebraic dynamical systems with discontinuities. These two fields are fundamental for the modelling and analysis of vehicle dynamical sytems. The results are also applicable to other non-smooth dynamical systems.
This book contains 71 papers presented at the symposium on "Recent Advances in Experimental Mechanics" which was organized in honor of Professor Isaac M. Daniel. The symposium took place at Virginia Polytechnic Institute and State University on th June 23-28, 2002, in conjunction with the 14 US National Congress of Applied Mechanics. The book is a tribute to Isaac Daniel, a pioneer of experimental mechanics and composite materials, in recognition of his continuous, original, diversified and outstanding contributions for half a century. The book consists of invited papers written by leading experts in the field. It contains original contributions concerning the latest developments in experimental mechanics. It covers a wide range of subjects, including optical methods of stress analysis (photoelasticity, moire, etc.), composite materials, sandwich construction, fracture mechanics, fatigue and damage, nondestructive evaluation, dynamic problems, fiber optic sensors, speckle metrology, digital image processing, nanotechnology, neutron diffraction and synchrotron radiation methods. The papers are arranged in the following nine sections: Mechanical characterization of material behavior, composite materials, fracture and fatigue, optical methods, n- destructive evaluation, neutron diffraction and synchrotron radiation methods, hybrid methods, composite structures, and structural testing and analysis.
The volume contains 19 contributions by international experts in the field of multibody system dynamics, robotics and control. The book aims to bridge the gap between the modeling of mechanical systems by means of multibody dynamics formulations and robotics. In the classical approach, a multibody dynamics model contains a very high level of detail, however, the application of such models to robotics or control is usually limited. The papers aim to connect the different scientific communities in multibody dynamics, robotics and control. Main topics are flexible multibody systems, humanoid robots, elastic robots, nonlinear control, optimal path planning, and identification.
Model-Based Control will be a collection of state-of-the-art contributions in the field of modelling, identification, robust control and optimization of dynamical systems, with particular attention to the application domains of motion control systems (high-accuracy positioning systems) and large scale industrial process control systems.The book will be directed to academic and industrial people involved in research in systems and control, industrial process control and mechatronics.
The interest of the applied mechanics community in chaotic dynamics of engineering systems has exploded in the last fifteen years, although research activity on nonlinear dynamical problems in mechanics started well before the end of the Eighties. It developed first within the general context of the classical theory of nonlinear oscillations, or nonlinear vibrations, and of the relevant engineering applications. This was an extremely fertile field in terms of formulation of mechanical and mathematical models, of development of powerful analytical techniques, and of understanding of a number of basic nonlinear phenomena. At about the same time, meaningful theoretical results highlighting new solution methods and new or complex phenomena in the dynamics of deterministic systems were obtained within dynamical systems theory by means of sophisticated geometrical and computational techniques. In recent years, careful experimental studies have been made to establish the actual occurrence and observability of the predicted dynamic phenomena, as it is vitally needed in all engineering fields. Complex dynamics have been shown to characterize the behaviour of a great number of nonlinear mechanical systems, ranging from aerospace engineering applications to naval applications, mechanical engineering, structural engineering, robotics and biomechanics, and other areas. The International Union of Theoretical and Applied Mechanics grasped the importance of such complex phenomena in the Eighties, when the first IUTAM Symposium devoted to the general topic of nonlinear and chaotic dynamics in applied mechanics and engineering was held in Stuttgart (1989).
Suitable for both individual and group learning, Engineering Acoustics focuses on basic concepts and methods to make our environments quieter, both in buildings and in the open air. The author's tutorial style derives from the conviction that understanding is enhanced when the necessity behind the particular teaching approach is made clear. He also combines mathematical derivations and formulas with extensive explanations and examples to deepen comprehension. Fundamental chapters on the physics and perception of sound precede those on noise reduction (elastic isolation) methods. The last chapter deals with microphones and loudspeakers. Moeser includes major discoveries by Lothar Cremer, including the optimum impedance for mufflers and the coincidence effect behind structural acoustic transmission. The appendix gives a short introduction on the use of complex amplitudes in acoustics.
When a mechanical system has two or more coupled vibrating components, the vibration of one of the components may destabilize the motion of the others. This destabilization effect, autoparametric resonance, is a concept that has important engineering applications. This book is the first completely devoted to the subject of autoparametric resonance in an engineering context. Using the tools of nonlinear analysis, the authors show how to carry out the first crucial step of determining the regions of parameter space where the semi-trivial solution is unstable. They describe what happens in these regions and then discuss non-trivial solutions and their stability. This text will appeal to graduate students and researchers in engineering and applied mathematics.
The book provides personal memories along with description of scientific works written by ex-graduate students and research associates of the late Professor Glass. The described research work covers a wide range of shock wave phenomena, resulting from seeds planted by Professor Glass. Professor Glass was born in Poland in 1918. He immigrated together with his parents to Canada at the age of 12 and received all his professional education at the University of Toronto, Canada. He became a world recognized expert in shock wave phenomena, and during his 45 years of active research he supervised more than 125 master and doctoral students, post-doctoral fellows and visiting research associates. In this book seven of his past students/research-associates describe their personal memories of Professor Glass and present some of their investigations in shock wave phenomena which sprung from their past work with Professor Glass. Specifically, these investigations include underwater shock waves, shock/bubble interaction, medical applications of shock wave, various types of shock tubes and shock tube techniques, shock wave attenuation and different types of shock wave reflections.
This volume provides the international multibody dynamics community with an up-to-date view on the state of the art in this rapidly growing field of research which now plays a central role in the modeling, analysis, simulation and optimization of mechanical systems in a variety of fields and for a wide range of industrial applications. This book contains selected contributions delivered at the ECCOMAS Thematic Conference on Multibody Dynamics, which was held in Brussels, Belgium and organized by the Universite catholique de Louvain, from 4th to 7th July 2011. Each paper reflects the State-of-Art in the application of Multibody Dynamics to different areas of engineering. They are enlarged and revised versions of the communications, which were enhanced in terms of self-containment and tutorial quality by the authors. The result is a comprehensive text that constitutes a valuable reference for researchers and design engineers which helps to appraise the potential for the application of multibody dynamics methodologies to a wide range of areas of scientific and engineering relevance.
The most important characteristic of the "world filled with nonlinearity" is the existence of scale interference: disparate space-time scales interfere with each other. Thus, the effects of unknowable scales invade the world that we can observe directly. This leads to various peculiar phenomena such as chaos, critical phenomena, and complex biological phenomena, among others. Conceptual analysis and phenomenology are the keys to describe and understand phenomena that are subject to scale interference, because precise description of unfamiliar phenomena requires precise concepts and their phenomenological description. The book starts with an illustration of conceptual analysis in terms of chaos and randomness, and goes on to explain renormalization group philosophy as an approach to phenomenology. Then, abduction is outlined as a way to express what we have understood about the world. The book concludes with discussions on how we can approach genuinely complex phenomena, including biological phenomena. The main target of this volume is young people who have just started to appreciate the world seriously. The author also wishes the book to be helpful to those who have been observing the world, but who wish to appreciate it afresh from a different angle.
The ?rst International Meeting of Advances in Robot Kinematics, ARK, occurred in September 1988, by invitation to Ljubljana, Slovenia, of a group of 20 int- nationally recognized researchers, representing six different countries from three continents. There were 22 lectures and approximately 150 attendees. This success of bringing together excellent research and the international community, led to the formation of a Scienti?c Committee and the decision to repeat the event biannually. The meeting was made open to all individuals with a critical peer review process of submitted papers. The meetings have since been continuously supported by the Jozef ? Stefan Institute and since 1992 have come under patronage of the Inter- tionalFederationforthePromotionofMechanismandMachineScience(IFToMM). Springer published the ?rst book of the series in 1991 and since 1994 Kluwer and Springer have published a book of the presented papers every two years. The papers in this book present the latest topics and methods in the kinem- ics, control and design of robotic manipulators. They consider the full range of - botic systems, including serial, parallel and cable driven manipulators, both planar and spatial. The systems range from being less than fully mobile to kinematically redundant to overconstrained. The meeting included recent advances in emerging areas such as the design and control of humanoids and humanoid subsystems, the analysis, modeling and simulation of human body motion, the mobility analysis of protein molecules and the development of systems which integrate man and - chine.
During the last decades, the growth of micro-electronics has reduced the cost of computing power to a level acceptable to industry and has made possible sophisticated control strategies suitable for many applications. Vibration c- trol is applied to all kinds of engineering systems to obtain the desired dynamic behavior, improved accuracy and increased reliability during operation. In this context, one can think of applications related to the control of structures' vib- tion isolation, control of vehicle dynamics, noise control, control of machines and mechanisms and control of ?uid-structure-interaction. One could continue with this list for a long time. Research in the ?eld of vibration control is extremely comprehensive. Pr- lems that are typical for vibration control of nonlinear mechanisms and str- tures arise in the ?elds of modeling systems in such a way that the model is suitable for control design, to choose appropriate actuator and sensor locations and to select the actuators and sensors. Theobjective of the Symposium was to present anddiscuss methodsthat contribute to thesolution of such problems and to demonstrate the state of the art inthe ?eld shown by typical examples. The intention was to evaluate the limits of performance that can beachievedby controlling the dynamics, and to point out gaps in present research and give links for areas offuture research.Mainly, it brought together leading experts from quite different areas presenting theirpoints of view.
This book intend to supply readers with some MATLAB codes for ?nite element analysis of solids and structures. After a short introduction to MATLAB, the book illustrates the ?nite element implementation of some problems by simple scripts and functions. The following problems are discussed: * Discrete systems, such as springs and bars * Beams and frames in bending in 2D and 3D * Plane stress problems * Plates in bending * Free vibration of Timoshenko beams and Mindlin plates, including laminated composites * Buckling of Timoshenko beams and Mindlin plates The book does not intends to give a deep insight into the ?nite element details, just the basic equations so that the user can modify the codes. The book was prepared for undergraduate science and engineering students, although it may be useful for graduate students. TheMATLABcodesofthisbookareincludedinthedisk.Readersarewelcomed to use them freely. The author does not guarantee that the codes are error-free, although a major e?ort was taken to verify all of them. Users should use MATLAB 7.0 or greater when running these codes. Any suggestions or corrections are welcomed by an email to [email protected].
Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration prediction of hydraulic machinery.
This volume collects the edited and reviewed contributions presented in the 5th iTi Conference in Bertinoro covering fundamental aspects in turbulent flows. In the spirit of the iTi initiative, the volume is produced after the conference so that the authors had the possibility to incorporate comments and discussions raised during the meeting. Turbulence presents a large number of aspects and problems, which are still unsolved and which challenge research communities in engineering and physical sciences both in basic and applied research. The book presents recent advances in theory related to new statistical approaches, effect of non-linearities and presence of symmetries. This edition presents new contributions related to the physics and control of laminar-turbulent transition in wall-bounded flows, which may have a significant impact on drag reduction applications. Turbulent boundary layers, at increasing Reynolds number, are the main subject of both computational and experimental long research programs aimed at improving our knowledge on scaling, energy distribution at different scales, structure eduction, roughness effects to name only a few. Like previous editions several numerical and experimental analysis of complex flows, mostly related to applications, are presented. The structure of the present book is as such that contributions have been bundled according to covering topics i.e. I Theory, II Stability, III Wall bounded flows, IV, Complex flows, V Acoustic, VI Numerical methods. The volume is dedicated to the memory of Prof. Rudolf Friedrich who prematurely died in Munster/Germany on the 16th of August 2012. In his honor the conference has started with a special session dedicated to his work.
This book reports on the latest technological and clinical advances in the field of neurorehabilitation. It is, however, much more than a conventional survey of the state-of-the-art in neurorehabilitation technologies and therapies. It was formed on the basis of a week of lively discussions between curious PhD students and leading research experts during the summer school on neurorehabilitation (SSNR2012), September 16-21 in Nuevalos, Zaragoza (Spain). Its unconventional format makes it a perfect guide for all PhD students, researchers and professionals interested in gaining a multidisciplinary perspective on current and future neurorehabilitation scenarios. The book covers various aspects of neurorehabilitation research and practice, organized into different parts. The first part discusses a selection of common impairments affecting brain function, such as stroke, cerebral palsy and Parkinson's disease; the second deals with both spinal cord and brain plasticity. The third part covers the most recent rehabilitation and diagnostics technologies, including robotics, neuroprostheses, brain-machine interfaces and electromyography systems. Practical examples and case studies related to the application of some of the latest techniques in realistic clinical scenarios are covered in the fourth part.
The considerable influence of inherent uncertainties on structural behavior has led the engineering community to recognize the importance of a stochastic approach to structural problems. Issues related to uncertainty quantification and its influence on the reliability of the computational models are continuously gaining in significance. In particular, the problems of dynamic response analysis and reliability assessment of structures with uncertain system and excitation parameters have been the subject of continuous research over the last two decades as a result of the increasing availability of powerful computing resources and technology. This book is a follow up of a previous book with the same subject (ISBN 978-90-481-9986-0) and focuses on advanced computational methods and software tools which can highly assist in tackling complex problems in stochastic dynamic/seismic analysis and design of structures. The selected chapters are authored by some of the most active scholars in their respective areas and represent some of the most recent developments in this field. The book consists of 21 chapters which can be grouped into several thematic topics including dynamic analysis of stochastic systems, reliability-based design, structural control and health monitoring, model updating, system identification, wave propagation in random media, seismic fragility analysis and damage assessment. This edited book is primarily intended for researchers and post-graduate students who are familiar with the fundamentals and wish to study or to advance the state of the art on a particular topic in the field of computational stochastic structural dynamics. Nevertheless, practicing engineers could benefit as well from it as most code provisions tend to incorporate probabilistic concepts in the analysis and design of structures.
The intention of this booklet is a brief but general introduction into the treatment of the Finite Element Method (FEM). The FEM has become the leading method in computer-oriented mechanics, so that many scienti?c brancheshavegrownup besides overthelastdecades. Nevertheless,theFEM today is a question of economy. On the one hand its industrial application is forced to reduce product development costs and time, on the other hand a large number of commercial FEM codes and a still growing number of software for e?ective pre- and postprocessors are available in the meantime. Due to that, today it is a quite challenging task to operate with all these di?erent tools at the same time and to understand all handling and so- tion techniques developed over the last years. So, we want to help in getting a deeper insight into the main "interfaces" between the "customers of the FEM" and the codes itself by providing a totally open structured FE-code based on Matlab, which is a very powerful tool in operating with matrix based formulations. That idea and conditions forced us some years ago to initiateDAEdalon as a tool for general FE developments in research appli- tions. In spite of still existing high sophisticated - mostly commercial - FE codes, the success and the acceptance of such a structured tool justify that decision afterwards more and more.
Vibration and structural acoustics analysis has become an essential requirement for high-quality structural and mechanical design in order to assure acoustic comfort and the integrity, reliability and fail-safe behavior of structures and machines. The underlying technologies of this field of multidisciplinary research are evolving very fast and their dissemination is usually scattered over different and complementary scientific and technical publication means. In order to make it easy for developers and technology end-users to follow the latest developments and news in the field, this book collects into a single volume selected, extended, updated and revised versions of papers presented at the Symposium on Vibration and Structural Acoustics Analysis, coordinated by J. Dias Rodrigues and C. M. A. Vasques, which was organised as part of the 3rd International Conference on Integrity, Reliability & Failure (IRF'2009), co-chaired by J. F. Silva Gomes and Shaker A. Meguid, held at the Faculty of Engineering of the University of Porto, Portugal, 20-24 July 2009. These papers where chosen from the more than 60 papers presented at the conference symposium. Written by experienced practitioners and researchers in the field, this book brings together recent developments in the field, spanning across a broad range of themes: vibration analysis, analytical and computational structural acoustics and vibration, material systems and technologies for noise and vibration control, vibration-based structural health monitoring/evaluation, machinery noise/vibration and diagnostics, experimental testing in vibration and structural acoustics, applications and case studies in structural acoustics and vibration. Each chapter presents and describes the state of the art, presents current research results and discusses the need for future developments in a particular aspect of vibration and structural acoustics analysis. The book is envisaged to be an appealing text for newcomers to the subject and a useful research study tool for advanced students and faculty members. Practitioners and researchers may also find this book a one-stop reference that addresses current and future challenges in this field. The variety of case studies is expected to stimulate a holistic view of sound and vibration and related fields and to appeal to a broad spectrum of engineers such as the ones in the mechanical, aeronautical, aerospace, civil and electrical communities. |
![]() ![]() You may like...
The GNU C Library Reference Manual…
Sandra Loosemore, Richard M. Stallman, …
Hardcover
R1,825
Discovery Miles 18 250
Practical Aspects of Declarative…
Shriram Krishnamurthi, C.R. Ramakrishnan
Paperback
R1,654
Discovery Miles 16 540
Research Anthology on Recent Trends…
Information Reso Management Association
Hardcover
R10,621
Discovery Miles 106 210
Formal Languages and Compilation
Stefano Crespi Reghizzi, Luca Breveglieri, …
Hardcover
R2,722
Discovery Miles 27 220
|