![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids > Dynamics & vibration
In the first, 1986, edition of this book, inverse problems in vibration were interpreted strictly: problems concerning the reconstruction of a unique, undamped vibrating system, of a specified type, from specified vibratory behaviour, particularly specified natural frequencies and/or natural mode shapes. In this new edition the scope of the book has been widened to include topics such as isospectral systems- families of systems which all exhibit some specified behaviour; applications of the concept of Toda flow; new, non-classical approaches to inverse Sturm-Liouville problems; qualitative properties of the modes of some finite element models; damage identification. With its emphasis on analysis, on qualitative results, rather than on computation, the book will appeal to researchers in vibration theory, matrix analysis, differential and integral equations, matrix analysis, non-destructive testing, modal analysis, vibration isolation, etc.
Tensegrity Systems discusses analytical tools to design energy efficient and lightweight structures employing the concept of tensegrity. This word is Buckminister Fuller's contraction of the words Tensile and Integrity, which suggests that integrity or, as we would say, stability of the structure comes from tension. In a tensegrity structure the rigid bodies (the bars) might not have any contact, thus providing extraordinary freedom to control shape, by controlling only tendons. This book will provide both static and dynamic analysis of special tensegrity structural concepts, which are motivated by biological material architecture. This will be the first book written to attempt to integrate structure and control design. All other books on structure design and books on control design assume these are independent topics, but performance can be greatly improved if the dynamics of the structure and the dynamics of the controls are coordinated to reduce the control efforts required to accomplish the system performance requirements."
Engineering the Guitar: Theory and Practice uniquely describes the mechanics of the guitar for engineers and craftsmen alike. Complete with informative illustrations, this popular musical volume describes the underlying mechanical concepts behind the guitar, supported by theory and test. A detailed description of guitar electronics paired with an analysis of sound quality appeals to scientific audiences as well as musicians technically apt. Readers will gain an understanding of the technical behavior of the instrument with respect to structural and component dynamics, in addition to the informative treatment of analytical models. Hand made and mass produced techniques are also examined in a chapter devoted to manufacturing processes. Audiences interested in mechanics, acoustics, and instrument making will find Engineering the Guitar: Theory and Practice an informative and enjoyable read.
This book comprises select proceedings of the National Conference on Control, Signal Processing, Energy and Power Systems (CSPES 2018). The book covers topics on both theoretical control systems and their applications across engineering domains such as automatic control, robotics, and adaptive controller design. It discusses several signal processing domains such as image, speech, biomedical signal processing and their applications in IOT, control, robotics, power and energy systems. The book emphasizes both conventional and non-conventional energy, environment, and green processes as related to energy and power systems engineering. The contents of this book will prove to be useful for students, researchers, academics, and professionals.
This is a self-contained introduction to algebraic control for nonlinear systems suitable for researchers and graduate students. It is the first book dealing with the linear-algebraic approach to nonlinear control systems in such a detailed and extensive fashion. It provides a complementary approach to the more traditional differential geometry and deals more easily with several important characteristics of nonlinear systems.
Thank heavens for Jens Wittenburg, of the University of Karlsruhe in Germany. Anyone who 's been laboring for years over equation after equation will want to give him a great big hug. It is common practice to develop equations for each system separately and to consider the labor necessary for deriving all of these as inevitable. Not so, says the author. Here, he takes it upon himself to describe in detail a formalism which substantially simplifies these tasks.
This is the first book of robotics presenting solutions of uncoupled and fully-isotropic parallel robotic manipulators and a method for their structural synthesis. Part 1 presents the methodology proposed for structural synthesis. Part 2 presents the various topologies of parallel robots generated by this systematic approach. Many solutions are presented here for the first time. The book will contribute to a widespread implementation of these solutions in industrial products.
The IUTAM Symposium on Flow in Collapsible Tubes and Past Other Highly Compliant Boundaries was held on 26-30 March, 2001, at the University of Warwick. As this was the first scientific meeting of its kind we considered it important to mark the occasion by producing a book. Accordingly, at the end of the Symposium the Scientific Committee met to discuss the most appropriate format for the book. We wished to avoid the format of the conventional conference book consisting of a large number of short articles of varying quality. It was agreed that instead we should produce a limited number of rigorously refereed and edited articles by selected participants who would aim to sum up the state of the art in their particular research area. The outcome is the present book. Peter W. Ca rpenter, Warwick Timothy J. Pedley, Cambridge May, 2002. VB SCIENTIFIC COMMITTEE Co-Chair: P.W. Carpenter, Engineering, Warwiek, UK Co-Chair: TJ. Pedley, DAMTP, Cambridge, UK V.V. Babenko, Hydromechanics, Kiev, Ukraine R. Bannasch, Bionik & Evolutionstechnik, TU Berlin, Germany C.D. Bertram, Biomedical Engineering, New South Wales, Australia M. Gad-el-Hak, Aerospace & Mechanical Engineering, Notre Dame, USA J.B. Grotberg, Biomedical Engineering, Michigan, USA. R.D. Kamm, Mechanical Engineering, MIT, USA Y. Matsuzaki, Aerospace Engineering, N agoya, Japan P.K. Sen, Applied Mechanics, IIT Delhi, India L. van Wijngaarden, Twente, Netherlands K-S. Yeo, Mechanical Engineering, NU Singapore.
This book presents a coherent framework for understanding the dynamics of piecewise-smooth and hybrid systems. An informal introduction expounds the ubiquity of such models via numerous. The results are presented in an informal style, and illustrated with many examples. The book is aimed at a wide audience of applied mathematicians, engineers and scientists at the beginning postgraduate level. Almost no mathematical background is assumed other than basic calculus and algebra.
This second edition of Precision Motion Control focuses on enabling technologies for precision engineering. It has been extensively edited and rewritten throughout with the following particular areas being expanded or added: piezoelectric actuators fine movement control gantry-stage control interpolation of quadrature encoder signals geometrical error modeling for single-, dual- and general-XY-axis stages."
Written by the world 's leading researchers on various topics of linear, nonlinear, and stochastic mechanical vibrations, this work gives an authoritative overview of the classic yet still very modern subject of mechanical vibrations. It examines the most important contributions to the field made in the past decade, offering a critical and comprehensive portrait of the subject from various complementary perspectives.
Civil infrastructure systems are generally the most expensive assets in any country, and these systems are deteriorating at an alarming rate. In addition, these systems have a long service life in comparison to most other commercial products. As well, the introduction of intelligent materials and innovative design approaches in these systems is painfully slow due to heavy relianceon traditional construction and maintenance practices, and the conservative nature of design codes. Feedback on the "state of the health" of constructed systems is practically nonexistent. In the quest for lighter, stronger and corrosion-resistant structures, the replacement of ferrous materials by high-strength fibrous ones is being actively pursued in several countries around the world, both with respect to the design of new structures as well as for the rehabilitation and strengthening of existing ones. In North America, active research in the design of new highway bridges is focused on a number of specialty areas, including the replacement of steel reinforcing bars in concrete deck slabs by randomly distributed low-modulus fibers, and the replacement of steel prestressing cables for concrete components by tendons comprising super-strong fibers. Research is also being conducted on using FRPs to repair and strengthen existing structures.
Non destructive testing aimed at monitoring, structural identification and di- nostics is of strategic importance in many branches of civil and mechanical - gineering. This type of tests is widely practiced and directly affects topical issues regarding the design of new buildings and the repair and monitoring of existing ones. The load bearing capacity of a structure can now be evaluated using well established mechanical modelling methods aided by computing facilities of great capability. However, to ensure reliable results, models must be calibrated with - curate information on the characteristics of materials and structural components. To this end, non destructive techniques are a useful tool from several points of view. Particularly, by measuring structural response, they provide guidance on the validation of structural descriptions or of the mathematical models of material behaviour. Diagnostic engineering is a crucial area for the application of non destructive testing methods. Repeated tests over time can indicate the emergence of p- sible damage occurring during the structure's lifetime and provide quantitative estimates of the level of residual safety.
This book concentrates on the nonlinear static and dynamic analysis of structures and structural components that are widely used in everyday engineering applications. It presents unique methods for nonlinear problems which permits the correct usage of powerful linear methods. Every topic is thoroughly explained and includes numerical examples. The new concepts, theories and methods introduced simplify the solution of the complex nonlinear problems.
The aim of this book is to present a rigorous phenomenological and mathematical formulation of sedimentation processes and to show how this theory can be applied to the design and control of continuous thickeners. The book is directed to stu dents and researchers in applied mathematics and engineering sciences, especially in metallurgical, chemical, mechanical and civil engineering, and to practicing en gineers in the process industries. Such a vast and diverse audience should read this book differently. For this reason we have organized the chapters in such a way that the book can be read in two ways. Engineers and engineering students will find a rigorous formulation of the mathematical model of sedimentation and the exact and approximate solutions for the most important problems encountered in the laboratory and in industry in Chapters 1 to 3, 7 and 8, and 10 to 12, which form a self-contained subject. They can skip Chapters 4 to 6 and 9, which are most important to applied mathematicians, without losing the main features of sedimentation processes. On the other hand, applied mathematicians will find special interest in Chapters 4 to 6 and 9 which show some known but many recent results in the field of conservation laws of quasilinear hyperbolic and degenerate parabolic equations of great interest today. These two approaches to the theory keep their own styles: the mathematical approach with theorems and proofs, and the phenomenological approach with its deductive technique."
The 24 papers presented at the international concluding colloquium of the German priority programme (DFG-Verbundschwerpunktprogramm) "Transition," held in April 2002 in Stuttgart. The unique and successful programme ran six years, starting April 1996, and was sponsored mainly by the Deutsche Forschungsgemeinschaft, DFG, but also by the Deutsches Zentrum f r Luft-und Raumfahrt, DLR, the Physikalisch-Technische Bundesanstalt Braunschweig, PTB, and Airbus Deutschland. The papers summarise the results of the programme and cover transition mechanisms, transition prediction, transition control, natural transition and measurement techniques, transition - turbulence - separation, and visualisation issues. Three invited papers are devoted to mechanisms of turbulence production, to a general framework of stability, receptivity and control, and a forcing model for receptivity analysis. Almost every transition topic arising in subsonic and transonic flow is covered.
This volume contains 44 papers presented at the Third Contact Mechanics International Symposium (CMIS 2001) held in Praia da Consola9ao, Peniche (portugal), June 17-21,2001. This Symposium was the direct continuation of the first two CMIS held in Lausanne (1992) and in Carry-Le-Rouet (1994). Other related meetings, in what concerns scientific topics and participants, took place in the nineties at La Grande Motte (1990), Vadstena (1996), Ferrara (1997), Munich (1998) and Grenoble (1999). The Symposium aimed at gathering researchers with interests in a wide range of topics in theoretical, computational and experimental contact mechanics. The call for papers mentioned topics in tribology, mathematical formulations and analysis, numerical methods in non-smooth mechanics, impact problems, instabilities and technological problems. The total number of participants was 102, from Universities and Research Institutes of 19 countries. The Scientific Committee reviewed 102 submitted abstracts, and the final program consisted of 6 main lectures, 43 oral communications and 36 poster presentations (see Appendix A). The papers in this book correspond to almost all the main lectures and oral communications, and they are assembled in 5 chapters: * Dynamics and Impact * Instabilities, Oscillations and Waves * Contact Models, Results and Applications * Mathematical Analysis * Numerical Methods. We thank all the authors for their valuable contributions to this volume. We are indebted to the members of the Scientific Committee for their help in refereeing the submitted abstracts and manuscripts. We also thank the Series editor, Prof. Graham Gladwell, for his assistance in the revision process.
This book meets head-on the difficulty of making practical use of new systems theory, presenting a selection of varied applications together with relevant theory. It shows how workable identification and control solutions can be derived by adapting and extrapolating from the theory. Each chapter has a common structure: a brief presentation of theory; the description of a particular application; experimental results; and a section highlighting, explaining and laying out solutions to the discrepancy between the theoretical and the practical.
In Mechanics of Poroelastic Media the classical theory of poroelasticity developed by Biot is developed and extended to the study of problems in geomechanics, biomechanics, environmental mechanics and materials science. The contributions are grouped into sections covering constitutive modelling, analytical aspects, numerical modelling, and applications to problems. The applications of the classical theory of poroelasticity to a wider class of problems will be of particular interest. The text is a standard reference for researchers interested in developing mathematical models of poroelasticity in geoenvironmental mechanics, and in the application of advanced theories of poroelastic biomaterials to the mechanics of biomaterials.
The last two decades have witnessed an enormous growth with regard to ap plications of information theoretic framework in areas of physical, biological, engineering and even social sciences. In particular, growth has been spectac ular in the field of information technology, soft computing, nonlinear systems and molecular biology. Claude Shannon in 1948 laid the foundation of the field of information theory in the context of communication theory. It is in deed remarkable that his framework is as relevant today as was when he 1 proposed it. Shannon died on Feb 24, 2001. Arun Netravali observes "As if assuming that inexpensive, high-speed processing would come to pass, Shan non figured out the upper limits on communication rates. First in telephone channels, then in optical communications, and now in wireless, Shannon has had the utmost value in defining the engineering limits we face." Shannon introduced the concept of entropy. The notable feature of the entropy frame work is that it enables quantification of uncertainty present in a system. In many realistic situations one is confronted only with partial or incomplete information in the form of moment, or bounds on these values etc.; and it is then required to construct a probabilistic model from this partial information. In such situations, the principle of maximum entropy provides a rational ba sis for constructing a probabilistic model. It is thus necessary and important to keep track of advances in the applications of maximum entropy principle to ever expanding areas of knowledge."
All typical and special modal and response analysis methods, applied within the frame of the design of spacecraft structures, are described in this book. It therefore addresses graduate students and engineers in the aerospace field.
T his book presents a t.hooretical framewerk and control methodology for a class of complcx dyna.mical systenis characterized by high state space dimension, multiple inpu t.s anrl out puts. significant nonlinearity, parametric uncertainty and unmodellod dyuarni cs. The book start.s wit.h an inl.rod uct.orv Chapter 1 where the peculiari- ties of control problcrns Ior complex systems are discussed and motivating examples from different fiolds of seience and technology are given. Chapter 2 prcscnts SO Il I(' rcsults of nonlinear control theory which assist in reading subsequent chaptors. The main notions and concepts of stability theory are int roduced. and problems of nonlinear transformation of sys- tem coordinates an' discussod. On this basis, we consider different design techniques and approaches t 0 linearization. stabilization and passification of nonlinear dynamical SySt('IIIS. Chapter 3 gives an cx posit.ion of the Speed-Gradient method and its ap- plications to nonlinear aud adaptive control. Convergence and robustness properties are exam iued. I~ roblcms of rcgulat ion, tracking, partial stabiliza- tion and control of 11amiItonia.n systerns are considered .
The ?eld of robotics continues to ?ourish and develop. In common with general scienti?c investigation, new ideas and implementations emerge quite spontaneously and these are discussed, used, discarded or subsumed at c- ferences, in the reference journals, as well as through the Internet. After a little more maturity has been acquired by the new concepts, then archival publication as a scienti?c or engineering monograph may occur. The goal of the Springer Tracts in Advanced Robotics is to publish new developments and advances in the ?elds of robotics research - rapidly and informally but with a high quality. It is hoped that prospective authors will welcome the opportunity to publish a structured presentation of some of the emerging robotics methodologies and technologies. The edited volume by Antonio Bicchi, Henrik Christensen and Domenico Prattichizzo is the outcome of the second edition of a workshop jointly sponsored by the IEEE Control Systems Society and the IEEE Robotics and Automation Society. Noticeably, the previous volume was published in the Springer Lecture Notes on Control and Information Sciences. The authors are recognised as leading scholars internationally. A n- ber of challenging control problems on the forefront of today's research in robotics and automation are covered, with special emphasis on vision, sensory-feedback control, human-centered robotics, manipulation, planning, ?exible and cooperative robots, assembly systems.
Machining dynamics play an essential role in the performance of machine tools and machining processes in manufacturing. Current advances in computational modelling, sensors, diagnostic equipment and analysis tools, 3D surface metrology and manufacturing science are giving researchers and practising engineers a new perspective on the machining process. Machining Dynamics: Fundamentals and Applications reflects the new integrated approach to studying machining dynamics by presenting state-of-the-art applications, practices and research in the field. Written by experts in each field, the first part of the book presents the basic theory, analysis and control methodology in addition to detailed modelling and diagnostic techniques for machining dynamics, while part two focuses on applying the fundamentals of machining dynamics in a variety of machining processes including turning, grinding, gear machining and non-traditional machining. Advanced undergraduate and postgraduate students studying manufacturing engineering and machining technology will find Machining Dynamics: Fundamentals and Applications a comprehensive and up-to-date introduction to the subject while the book s thoroughness allows it to serve as a useful reference for manufacturing engineers, production supervisors, planning and application engineers and designers."
This monograph presents the mechanics of vibration, buckling and bending of elastic structures with inclined members such as x-braced high rise frames and conical shells. More than giving detailed derivations of basic equations, Mechanics of Elastic Structures with Inclined Members is mainly oriented towards practical problem-solving. The book can be used as a textbook for graduate students concentrating on structural mechanics, or as a reference book for engineers and researchers in the fields of engineering mechanics, civil engineering, mechanical engineering, and aerospace engineering. |
You may like...
Web and Wireless Geographical…
Michela Bertolotto, Cyril Ray, …
Paperback
R1,380
Discovery Miles 13 800
|