![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids > Dynamics & vibration
Besides turbulence there is hardly any other scientific topic which has been considered as a prominent scientific challenge for such a long time. The special interest in turbulence is not only based on it being a difficult scientific problem but also on its meaning in the technical world and our daily life. This carefully edited book comprises recent basic research as well as research related to the applications of turbulence. Therefore, both leading engineers and physicists working in the field of turbulence were invited to the iTi Conference on Turbulence held in Bad Zwischenahn, Gemany 25th - 28th of September 2005. Discussed topics include, for example, scaling laws and intermittency, thermal convection, boundary layers at large Reynolds numbers, isotropic turbulence, stochastic processes, passive and active scalars, coherent structures, numerical simulations, and related subjects.
"Analytical System Dynamics: Modeling and Simulation" combines results from analytical mechanics and system dynamics to develop an approach to modeling constrained multidiscipline dynamic systems. This combination yields a modeling technique based on the energy method of Lagrange, which in turn, results in a set of differential-algebraic equations that are suitable for numerical integration. Using the modeling approach presented in this book enables one to model and simulate systems as diverse as a six-link, closed-loop mechanism or a transistor power amplifier.
Energy Harvesting Technologies provides a cohesive overview of the fundamentals and current developments in the field of energy harvesting. In a well-organized structure, this volume discusses basic principles for the design and fabrication of bulk and MEMS based vibration energy systems, theory and design rules required for fabrication of efficient electronics, in addition to recent findings in thermoelectric energy harvesting systems. Combining leading research from both academia and industry onto a single platform, Energy Harvesting Technologies serves as an important reference for researchers and engineers involved with power sources, sensor networks and smart materials.
Complexity science has been a source of new insight in physical and social systems and has demonstrated that unpredictability and surprise are fundamental aspects of the world around us. This book is the outcome of a discussion meeting of leading scholars and critical thinkers with expertise in complex systems sciences and leaders from a variety of organizations, sponsored by the Prigogine Center at The University of Texas at Austin and the Plexus Institute, to explore strategies for understanding uncertainty and surprise. Besides contributions to the conference, it includes a key digest by the editors as well as a commentary by the late nobel laureate Ilya Prigogine, "Surprises in half of a century." The book is intended for researchers and scientists in complexity science, as well as for a broad interdisciplinary audience of both practitioners and scholars. It will well serve those interested in the research issues and in the application of complexity science to physical and social systems.
Most books on this subject are designed for elective courses in "intermediate dynamics" covering advanced Newtonian and introductory Lagrangian methods. Such books do not give adequate emphasis to advanced topics in Newton-Euler dynamics. Because the first required course in dynamics usually concentrates on 2-D dynamics, important 3-D problems are left to a further course. Examples are robots, automated manufacturing devices, aerospace vehicles, and biomechanical components. This material cannot be covered adequately in one course if it is to be shared with an introduction to Langrangian methods. This text is devoted to application of Newton-Euler methods to complex, real-life 3-D dynamics problems; it essentially completes this topic.
Mechanics provides the link between mathematics and practical engineering app- cations. It is one of the oldest sciences, and many famous scientists have left and will leave their mark in this fascinating ?eld of research. Perhaps one of the most prominentscientists in mechanics was Sir Isaac Newton, who with his "laws of - tion" initiated the description of mechanical systems by differential equations. And still today, more than 300 years after Newton, this mathematical concept is more actual than ever. The rising computer power and the development of numerical solvers for diff- ential equations allowed engineersall over the world to predict the behavior of their physical systems fast and easy in an numerical way. And the trend to computational simulation methods is still further increasing, not only in mechanics, but practically in all branches of science. Numerical simulation will probablynot solve the world's engineering problems, but it will help for a better understanding of the mechanisms of our models.
Machining dynamics play an essential role in the performance of machine tools and machining processes in manufacturing. Current advances in computational modelling, sensors, diagnostic equipment and analysis tools, 3D surface metrology and manufacturing science are giving researchers and practising engineers a new perspective on the machining process. Machining Dynamics: Fundamentals and Applications reflects the new integrated approach to studying machining dynamics by presenting state-of-the-art applications, practices and research in the field. Written by experts in each field, the first part of the book presents the basic theory, analysis and control methodology in addition to detailed modelling and diagnostic techniques for machining dynamics, while part two focuses on applying the fundamentals of machining dynamics in a variety of machining processes including turning, grinding, gear machining and non-traditional machining. Advanced undergraduate and postgraduate students studying manufacturing engineering and machining technology will find Machining Dynamics: Fundamentals and Applications a comprehensive and up-to-date introduction to the subject while the book s thoroughness allows it to serve as a useful reference for manufacturing engineers, production supervisors, planning and application engineers and designers."
This volume constitutes the proceedings of the 1997 IUTAM Symposium, where invited researchers in acoustics, aeronautics, elastodynamics, electromagnetics, hydrodynamics, and mathematics discussed non-reflecting computational boundaries. The participants formulated benchmark problems for evaluating computational boundaries, as described in the first article.
This book presents recent developments in vibration control systems that employ embedded piezoelectric sensors and actuators, reviewing ways in which active vibration control systems can be designed for piezoelectric laminated structures, paying distinct attention to how such control systems can be implemented in real time. Includes numerous examples and experimental results obtained from laboratory-scale apparatus, with details of how similar setups can be built.
The aim of this International Symposium on Dynamics of Vibro-Impact Systems is to provide a forum for the discussion of recent developments in the theory and industrial applications of vibro-impact ocean systems. A special effort has been made to invite active researchers from engineering, science, and applied mathematics communities. This symposium has indeed updated engineers with recent analytical developments of vibro-impact dynamics and at the same time allowed engineers and industrial practitioners to alert mathematicians with their unresolved issues. The symposium was held in Troy, Michigan, during the period October 1-3, 2008. It included 28 presentations grouped as follows: The first group comprises of nine papers dealing with the interaction of ocean systems with slamming waves and floating ice. It also covers related topics such as sloshing-slamming dynamics, and non-smooth dynamics associated with offshore structures. Moreover, it includes control issues pertaining to marine surface vessels. The second group consists of fifteen papers treats the interaction of impact systems with friction and their control, Hertzian contact dynamics, parameter variation in vibro-impact oscillators, random excitation of vibro-impact systems, vibro-impact dampers, oscillators with a bouncing ball, limiting phase trajectory corresponding to energy exchange between the oscillator and external source, frequency-energy distribution in oscillators with impacts, and discontinuity mapping. The third group is covered in four papers and addresses some industrial applications such as hand-held percussion machines, rub-impact dynamics of rotating machinery, impact fatigue in joint structures.
This book presents a modern and self-contained treatment of the Liapunov method for stability analysis, in the framework of mathematical nonlinear control theory. A Particular focus is on the problem of the existence of Liapunov functions (converse Liapunov theorems) and their regularity, whose interest is especially motivated by applications to automatic control. Many recent results in this area have been collected and presented in a systematic way. Some of them are given in extended, unified versions and with new, simpler proofs. In the 2nd edition of this successful book several new sections were added and old sections have been improved, e.g., about the Zubovs method, Liapunov functions for discontinuous systems and cascaded systems. Many new examples, explanations and figures were added making this book accessible and well readable for engineers as well as mathematicians.
Springer published the ?rst book of the series of Advances in Robot Kinematics in an edited format in 1991. Since 1994, Kluwer and Springer published a book everytwo yearswithoutinterruptions.Thesebooksdealwith the theoryandpractice of robot kinematics and treat the kinematic aspects of robot motion and design of robots.EachbookofAdvancesinRobotKinematicsreportsthemostrecentresearch projects and presents important new discoveries. The series of Advances in Robot Kinematics is considered a most important source of information in its area. The present book emphasizes kinematic analysis and design. The issues - dressed are fundamentally kinematic in nature, including synthesis, calibration, - dundancy, forcecontrol, dexterity, inverseand forwardkinematics, kinematicsin- larities, as well as over-constrained systems. Methods used include line geometry, quaternion algebra, screw algebra, and linear algebra. These methods are applied to both parallel and serial multi-degree-of-freedom systems. The results should - terest researchers, teachers and students, in ?elds of engineering and mathematics related to robot theory, design, control and application. The contributions had been rigorously reviewed by independent reviewers. The authorsdiscussed their results at the eleventhinternationalsymposiumon Advances in Robot Kinematics which was held in June 2008 in Batz-sur-Mer, France. The symposium was organized by the Institut de Recherche en Communications et - bernetique de Nantes, France in collaborationwith the J. Stefan Institute, Ljubljana, Slovenia, under the patronage of the International Federation for the Promotion of Mechanism and Machine Scie
Many historically and artistically important masonry buildings of the world's architecturalheritageareindireneedofmaintenanceandrestoration.Inorder tooptimizesuchoperationsintermsofcost-e?ectiveness,architecturalimpact andstatice?ectiveness,accuratemodelsofthestructuralbehaviorofmasonry constructions are invaluable. The ultimate aim of such modeling is to obtain important information, such as the stress ?eld, and to estimate the extent of cracking and its evolution when the structure is subjected to variations in both boundary and loading conditions. Although masonry has been used in building for centuries, it is only - centlythatconstitutivemodelsandcalculationtechniqueshavebeenavailable that enable realistic description of the static behavior of structures made of this heterogeneous material whose response to tension is fundamentally d- ferent from that to compression. Important insights on the mechanical behavior of masonry arches and vaults come from as far back as Leonardo [10], Hooke [58], Poleni [92] and many other authors (see [47], [9] and [10] for detailed references). Castigliano, in his famous paper on the Mosca bridge [23], and Signorini, in his studies on masonry beams [97], [98], showed both the possibility and necessity of taking into account the weak tensile strength of masonry material.
Based on a long engineering experience, this book offers a comprehensive and state-of-the-art analysis of aerodynamic and flight mechanic entry topics. This updated edition had new chapters on Re-entry on Mars mission, flight quality, rarefied aerodynamics and re-entry accuracy. In addition, it provides a large set of application exercises and solutions.
TheseriesAdvancesinIndustrialControl aimsto reportandencouragete- nologytransferincontrolengineering.Therapiddevelopmentofcontrolte- nology has an impact on all areas of the control discipline. New theory, new controllers, actuators, sensors, new industrial processes, computer methods, new applications, new philosophies, new challenges. Much of this devel- ment work resides in industrial reports, feasibility study papers and the - ports of advanced collaborative projects. The series o?ers an opportunity for researchersto present an extended exposition of such new work in all aspects of industrial control for wider and rapid dissemination. Autonomy for aerial, land, and marine (surface and underwater) vehicles is an ever-expanding ?eld of industrial control engineering in which there is signi?cant international interest. Currently, there are many prototypes and working autonomous vehicles in all the ?elds of application; however, some areas are better developed than others. Meanwhile in the control conference literature it is possible to see that frontier research has reached the pr- lems of working with groups, convoys or swarms of cooperating autonomous vehicles. The tasks that autonomous mobiles can tackle are very often either h- ardous, or, conversely, routine, wheretheuseofaninsitu humanoperatoristo be avoided, or simply technically (and economically) unnecessary. Typically, such tasks involve inspection, monitoring, and detection. For example, - manned aerial vehicles (UAVs) can be used to perform airborne sea searches, inspect long-distance power lines or oil and gas pipelines (particularly those traversing hostile, or hazardous terrain), monitor environmental or meteo- logical variables and survey crop production and forestry resources. This list is by no means exhaustive and UAVs can perform many other valuable tas
Computational Mechanics of the Classical Guitar describes a new dynamic paradigm in instrument acoustics based on time-dependent transient analysis and simulation of complete musical instruments. It describes the current state of theoretical and experimental research into the guitar for engineers, instrument makers and musicians. This includes a summary of the basic equations for the mechanics of vibrating bodies and a presentation of the FDM (finite difference method) model with which the true vibrational behaviour of the instrument as an entire system can be understood for the first time. This monograph presents various new theoretical and experimental results and insights into guitar playing such as the coupling between the strings and the top plate or a description of the finger noise made when the fingers slide over the strings before plucking.
Besides turbulence, there is hardly any other scientific topic which has been considered a prominent scientific challenge for such a long time. The special interest in turbulence is not only based on it being a difficult scientific problem but also on its meaning in the technical world and our daily life. This carefully edited book comprises recent basic research as well as research related to the applications of turbulence. Therefore, both leading engineers and physicists working in the field of turbulence were invited to the iTi Conference on Turbulence held in Bad Zwischenahn, Gemany 21st - 24th of September 2003. Topics discussed include, for example, scaling laws and intermittency, thermal convection, boundary layers at large Reynolds numbers, isotropic turbulence, stochastic processes, passive and active scalars, coherent structures, numerical simulations, and related subjects.
Periodic Systems gives a comprehensive treatment of the theory of periodic systems, including the problems of filtering and control. Topics covered include: basic issues, including Floquet theory, controllability and observability, canonical decomposition, system norms and Lyapunov and robust stability; the problem of state estimation in its various forms, filtering, prediction and smoothing; control design methods, particularly optimal and robust control. The text focuses on discrete-time signals and systems; however, an overview of the entire field, including the continuous-time case, is provided in the first chapter. The authors presentation of the theory and results is mathematically rigorous while maintaining a readable style, avoiding excessive formalism. This makes the book accessible to graduate students and researchers from the fields of engineering, physics, economics and mathematics.
Computational kinematics is an enthralling area of science with a rich spectrum of problems at the junction of mechanics, robotics, computer science, mathematics, and computer graphics. The present book collects up-to-date methods as presented during the Fifth International Workshop on Computational Kinematics (CK2009) held at the University of Duisburg-Essen, Germany. The covered topics include design and optimization of cable-driven robots, analysis of parallel manipulators, motion planning, numerical methods for mechanism calibration and optimization, geometric approaches to mechanism analysis and design, synthesis of mechanisms, kinematical issues in biomechanics, balancing and construction of novel mechanical devices, detection and treatment of singularities, as well as computational methods for gear design. The results should be of interest for practicing and research engineers as well as Ph.D. students from the fields of mechanical and electrical engineering, computer science, and computer graphics.
This book presents an introduction into the entire science of Continuum Mechanics in three parts. The presentation is modern and comprehensive. Its introduction into tensors is very gentle. The book contains many examples and exercises, and is intended for scientists, practitioners and students of mechanics.
Modern technical advancements in areas such as robotics, multi-body systems, spacecraft, control, and design of complex mechanical devices and mechanisms in industry require the knowledge to solve advanced concepts in dynamics. "Mechanisms and Robots Analysis with MATLAB" provides a thorough, rigorous presentation of kinematics and dynamics. The book uses MATLAB as a tool to solve problems from the field of mechanisms and robots. The book discusses the tools for formulating the mathematical equations, and also the methods of solving them using a modern computing tool like MATLAB. An emphasis is placed on basic concepts, derivations, and interpretations of the general principles. The book is of great benefit to senior undergraduate and graduate students interested in the classical principles of mechanisms and robotics systems. Each chapter introduction is followed by a careful step-by-step presentation, and sample problems are provided at the end of every chapter.
Structure-Borne Sound" is a thorough introduction to structural vibrations with emphasis on audio frequencies and the associated radiation of sound. The book presents in-depth discussions of fundamental principles and basic problems, in order to enable the reader to understand and solve his own problems. It includes chapters dealing with measurement and generation of vibrations and sound, various types of structural wave motion, structural damping and its effects, impedances and vibration responses of the important types of structures, as well as with attenuation of vibrations, and sound radiation from structures. For the third edition, the author fundamentally revised and newly organized the contents of the work. Nevertheless, the intention has been to preserve the style of the previous editions, namely to focus on the fundamentals enabling the reader to analyse further problems.
This text is well-designed with respect to the exposition from the preliminary to the more advanced and the applications interwoven throughout. It provides the essential foundations for the theory as well as the basic facts relating to almost periodicity. In six structured and self-contained chapters, the author unifies the treatment of various classes of almost periodic functions, while uniquely addressing oscillations and waves in the almost periodic case. This is the first text to present the latest results in almost periodic oscillations and waves. The presentation level and inclusion of several clearly presented proofs make this work ideal for graduate students in engineering and science. The concept of almost periodicity is widely applicable to continuuum mechanics, electromagnetic theory, plasma physics, dynamical systems, and astronomy, which makes the book a useful tool for mathematicians and physicists.
This volume treats Lagrange equations for electromechanical systems, including piezoelectric transducers and selected applications. It is essentially an extension to piezoelectric systems of the work by Crandall et al.: "Dynamics of Mechanical and Electromechanical Systems," published in 1968. The first three chapters contain classical material based on this and other well known standard texts in the field. Some applications are new and include material not published in a monograph before.
The most comprehensive book on electroacoustic transducers and arrays for underwater sound Includes transducer modeling techniques and transducer designs that are currently in use Includes discussion and analysis of array interaction and nonlinear effects in transducers Contains extensive data in figures and tables needed in transducer and array design Written at a level that will be useful to students as well as to practicing engineers and scientists |
![]() ![]() You may like...
Diagnosis, Fault Detection & Tolerant…
Nabil Derbel, Jawhar Ghommam, …
Hardcover
R4,392
Discovery Miles 43 920
Active Control of Flexible Structures…
Alberto Cavallo, Giuseppe De Maria, …
Hardcover
R2,890
Discovery Miles 28 900
Nonlinear Approaches in Engineering…
Reza N. Jazar, Liming Dai
Hardcover
R4,682
Discovery Miles 46 820
AWS Billing and Cost Management User…
Documentation Team
Hardcover
Finite and Instantaneous Screw Theory in…
Tao Sun, Shuofei Yang, …
Hardcover
R2,939
Discovery Miles 29 390
Research Anthology on Architectures…
Information R Management Association
Hardcover
R13,716
Discovery Miles 137 160
|