Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids > Dynamics & vibration
Dry Clutch Control for Automated Manual Transmission Vehiclesanalyses the control of a part of the powertrain which has a key role in ride comfort during standing-start and gear-shifting manoeuvres. The mechanical conception of the various elements in the driveline has long since been optimised so this book takes a more holistic system-oriented view of the problem featuring: a comprehensive description of the driveline elements and their operation paying particular attention to the clutch, a nonlinear model of the driveline for simulation and a simplified model for control design, with a standing-start driver automaton for closed loop simulation, a detailed analysis of the engagement operation and the related comfort criteria, different control schemes aiming at meeting these criteria, friction coefficient and unknown input clutch torque observers, practical implementation issues and solutions based on experience of implementing optimal engagement strategies on two Renault prototypes.
Nonlinear Dynamics represents a wide interdisciplinary area of research dealing with a variety of "unusual" physical phenomena by means of nonlinear differential equations, discrete mappings, and related mathematical algorithms. However, with no real substitute for the linear superposition principle, the methods of Nonlinear Dynamics appeared to be very diverse, individual and technically complicated. This book makes an attempt to find a common ground for nonlinear dynamic analyses based on the existence of strongly nonlinear but quite simple counterparts to the linear models and tools. It is shown that, since the subgroup of rotations, harmonic oscillators, and the conventional complex analysis generate linear and weakly nonlinear approaches, then translations and reflections, impact oscillators, and hyperbolic (Clifford's) algebras must give rise to some "quasi impact" methodology. Such strongly nonlinear methods are developed in several chapters of this book based on the idea of non-smooth time substitutions. Although most of the illustrations are based on mechanical oscillators, the area of applications may include also electric, electro-mechanical, electrochemical and other physical models generating strongly anharmonic temporal signals or spatial distributions. Possible applications to periodic elastic structures with non-smooth or discontinuous characteristics are outlined in the final chapter of the book.
The purpose of this book is to provide students, practicing engineers and scientists with a treatment of nonlinear phenomena occurring in physical systems. Although only mechanical models are used, the theory applies to all physical systems governed by the same equations, so that the book can be used to study nonlinear phenomena in other branches of engineering, such as electrical engineering and aerospace engineering, as well as in physics. The book consists of two volumes. Volume I is concerned with single degree-of-freedom systems and it presents the fundamental concepts of nonlinear analysis. Both analytical methods and computer simulations are included. The material is presented in such a manner that the book can be used as a graduate as well as an undergraduate textbook. Volume II deals with multi-degree-of-freedom systems. Following an introduc tion to linear systems, the volume presents fundamental concepts of geometric theory and stability of motion of general nonlinear systems, as well as a concise discussion of basic approximate methods for the response of such systems. The material represents a generalization of a series of papers on the vibration of nonlinear multi-degree-of-freedom systems, some of which were published by me and my associates during the period 1965 - 1983 and some are not yet published."
Basic models and concepts of machine dynamics and motion control are presented in the order of the principal steps of machine design. The machine is treated as a coupled dynamical system, including drive, mechanisms and controller, to reveal its behavior at different regimes through the interaction of its units under dynamic and processing loads. The main dynamic effects in machines are explained. The influence of component compliances on accuracy, stability and efficiency of the machines is analyzed. Methods for decreasing internal and external vibration activity of machines are described. The dynamic features of digital control are considered. Special attention is given to machines with intense dynamic behavior: resonant and hand-held percussion ones. Targeted to engineers as well as to lecturers and advanced students.
This book is a collection of papers contributed by some of the greatest names in the areas of chaos and nonlinear dynamics. Each paper examines a research topic at the frontier of the area of dynamical systems. As well as reviewing recent results, each paper also discusses the future perspectives of each topic. The result is an invaluable snapshot of the state of the ?eld by some of the most important researchers in the area. The ?rst contribution in this book (the section entitled "How did you get into Chaos?") is actually not a paper, but a collection of personal accounts by a number of participants of the conference held in Aberdeen in September 2007 to honour Celso Grebogi's 60th birthday. At the instigation of James Yorke, many of the most well-known scientists in the area agreed to share their tales on how they got involved in chaos during a celebratory dinner in Celso's honour during the conference. This was recorded in video, we felt that these accounts were a valuable historic document for the ?eld. So we decided to transcribe it and include it here as the ?rst section of the book.
This volume contains contributions from the speakers at the NATO Advanced Research Workshop on "3D 5tructure and Dynamics of RNA", which was held in Renesse, The Netherlands, 21 - 24 August, 1985. Two major developments have determined the progress of nucleic acid research during the last decade. First, manipulation of genetic material by recombinant DNA methodology has enabled detailed studies of the function of nucleic acids in vivo. 5econd, the use of powerful physical methods, such as X-ray diffraction and nuclear magnetic resonance spectroscopy, in the study of biomacromolecules has provided information regarding the structure and the dynamics of nucleic acids. Both developments were enabled by the advance of synthetic methods that allow preparation of nucleic acid molecules of required sequence and length. The basic understanding of nucleic acid function will ultimately depend on a close collaboration between molecular biologists and biophy sicists. In the case of RNA, the ground rules for the formation of secondary structure have been derived from physical studies of oligoribonucleotides. Powerfull spectroscopic techniques have revealed more details of ~~A structure including novel conformations (e.g. left-handed Z-RNA). A wealth of information has been obtained by studying the relatively small transfer RNA molecules. A few of these RNAs have been crystallized, enabling determination of their three-dimensional structure. It has become apparent that "non-classical" basepairing between distal nucleotides gives rise to tertiary interactions, determining the overall shape of the molecule.
The papers in this volume address advanced nonlinear topics in the general areas of vibration mitigation and system identification, such as, methods of analysis of strongly nonlinear dyanmical systems; techniques and methodologies for interpreting complex, multi-frequency transitions in damped nonlinear responses; new approaches for passive vibration mitigation based on nonlinear targeted energy transfer (TET) and the associated concept of nonlinear energy sink (NES); and an overview and assessment of current nonlinear system identification techniques.
In 1960, Dr. George Deacon ofthe National Institute ofOceanography in England organized a meeting in Easton, Maryland that summarized the state of our understanding at that time of ocean wave statistics and dynamics. It was a pivotal occasion: spectral techniques for wave measurement were beginning to be used, wave-wave interactions hadjust been discovered, and simple models for the growth of waves by wind were being developed. The meeting laid the foundation for much work that was to follow, but one could hardly have imagined the extent to which new techniques of measurement, particularly by remote sensing, new methods of calculation and computation, and new theoretical and laboratory results would, in the following twenty years, build on this base. When Gaspar Valenzuela of the V. S. Naval Research Laboratory perceived that the time was right for a second such meeting, it was natural that Sir George Deacon would be invited to serve as honorary chairman for the meeting, and the entire waves community was delighted at his acceptance. The present volume contains reviewed and edited papers given at this second meeting, held this time in Miami, Florida, May 13-20, 1981, with the generous support of the Office of Naval Research, the National Aeronautics and Space Administration, and the National Oceanic and Atmospheric Administration.
The dynamics of bodies containing fluids is a subject of long-standing im portance in many technical applications. The stability of motion of such bodies, in particular, has been the subject of study by Soviet engineers and applied mathematicians who have brought their fuH powers of analysis to bear on the problem, and have succeeded in developing a very weH-founded body of theory. It is difficult to find a more striking example anywhere of the application of the classical methods of analytical mechanics, together with more modern concepts of stability analysis, in such a comprehensive and elegent form as that presented by Profs. Moiseyev and Rumyantsev. Therefore, it is highly significant that this recent monograph has been trans lated and made available to the English-speaking community. H. NORMAN ABRAMSON San Antonio July, 1967 v Foreword During the last 15-20 years, problems of dynamics of rigid bodies with fluid-filled cavities have increasingly attracted the attention of scientists."
Master the conceptual, theoretical and practical aspects of kinematics with this exhaustive text, which provides a rigorous analysis and description of general motion in mechanical systems, with numerous examples from spinning tops to wheel ground-vehicles. Over 400 figures illustrate the main ideas and provide a geometrical interpretation and a deeper understanding of concepts, and exercises and problems throughout the text provide additional hands-on practice. Ideal for students taking courses on rigid body kinematics, and an invaluable reference for researchers.
The interest of the media in dust explosions increased considerably following two major grain-elevator disasters in the United States in 1979. However, these were not isolated incidents and were statistically unusual only in the high loss of life involved. Any oxidizable material that is dispersed in fine powder form may be explosive, and ignition sources with sufficient energy to ignite a dust cloud are easily produced in normal industrial processing. Dust fires and minor incidents are not uncommon in many industries, but fortunately the combination of events and circumstances that must coincide for a large-scale explosion arise only rarely. Nevertheless, this is often more by luck than by good management and many potentially hazardous situations are common in industry. An explosive dust cloud and the circumstances in which it can ignite are not as simple to define as the equivalent situation in gases or flammable vapors. A large number of definitions and experimental tests have been devised to characterize the explosibility of dusts and ignition sources. The aim of this book is to provide a guide describing conditions in industry that could lead to dust explosions and the means to avoid them. Ignition sources and the way in which they can arise in powder processing are discussed and illustrated by case histories of reported incidents. The methods by which the potential hazards of a process or product can be evaluated are described, with special attention paid to the interpretation of the results of the different experimental methods.
Though the reductionist approachto biology and medicine has led to several imp- tant advances, further progresses with respect to the remaining challenges require integration of representation, characterization and modeling of the studied systems along a wide range of spatial and time scales. Such an approach, intrinsically - lated to systems biology, is poised to ultimately turning biology into a more precise and synthetic discipline, paving the way to extensive preventive and regenerative medicine [1], drug discovery [20] and treatment optimization [24]. A particularly appealing and effective approach to addressing the complexity of interactions inherent to the biological systems is provided by the new area of c- plex networks [34, 30, 8, 13, 12]. Basically, it is an extension of graph theory [10], focusing on the modeling, representation, characterization, analysis and simulation ofcomplexsystemsbyconsideringmanyelementsandtheirinterconnections.C- plex networks concepts and methods have been used to study disease [17], tr- scription networks [5, 6, 4], protein-protein networks [22, 36, 16, 39], metabolic networks [23] and anatomy [40].
Multibody systems are used extensively in the investigation of mechanical systems including structural and non-structural applications. It can be argued that among all the areas in solid mechanics the methodologies and applications associated to multibody dynamics are those that provide an ideal framework to aggregate d- ferent disciplines. This idea is clearly reflected, e. g. , in the multidisciplinary applications in biomechanics that use multibody dynamics to describe the motion of the biological entities, in finite elements where multibody dynamics provides - werful tools to describe large motion and kinematic restrictions between system components, in system control where the methodologies used in multibody dynamics are the prime form of describing the systems under analysis, or even in many - plications that involve fluid-structure interaction or aero elasticity. The development of industrial products or the development of analysis tools, using multibody dynamics methodologies, requires that the final result of the devel- ments are the best possible within some limitations, i. e. , they must be optimal. Furthermore, the performance of the developed systems must either be relatively insensitive to some of their design parameters or be sensitive in a controlled manner to other variables. Therefore, the sensitivity analysis of such systems is fundamental to support the decision making process. This book presents a broad range of tools for designing mechanical systems ranging from the kinematic and dynamic analysis of rigid and flexible multibody systems to their advanced optimization.
The aim of the present book is to present theoretical nonlinear aco- tics with equal stress on physical and mathematical foundations. We have attempted explicit and detailed accounting for the physical p- nomena treated in the book, as well as their modelling, and the f- mulation and solution of the mathematical models. The nonlinear acoustic phenomena described in the book are chosen to give phy- cally interesting illustrations of the mathematical theory. As active researchers in the mathematical theory of nonlinear acoustics we have found that there is a need for a coherent account of this theory from a unified point of view, covering both the phenomena studied and mathematical techniques developed in the last few decades. The most ambitious existing book on the subject of theoretical nonlinear acoustics is "Theoretical Foundations of Nonlinear Aco- tics" by O. V. Rudenko and S. I. Soluyan (Plenum, New York, 1977). This book contains a variety of applications mainly described by Bu- ers' equation or its generalizations. Still adhering to the subject - scribed in the title of the book of Rudenko and Soluyan, we attempt to include applications and techniques developed after the appearance of, or not included in, this book. Examples of such applications are resonators, shockwaves from supersonic projectiles and travelling of multifrequency waves. Examples of such techniques are derivation of exact solutions of Burgers' equation, travelling wave solutions of Bu- ers' equation in non-planar geometries and analytical techniques for the nonlinear acoustic beam (KZK) equation.
Random Vibration in Spacecraft Structures Design is based on the lecture notes "Spacecraft structures" and "Special topics concerning vibration in spacecraft structures" from courses given at Delft University of Technology. The monograph, which deals with low and high frequency mechanical, acoustic random vibrations is of interest to graduate students and engineers working in aerospace engineering, particularly in spacecraft and launch vehicle structures design.
This book has been written to provide an intro Chapter 2 deals with the mechanism of hear duction to the fundamental concepts of sound ing and the subjective rating of sound, includ and a comprehensive coverage whereby un ing age-related and noise-induced hearing loss. wanted sound (noise) can be controlled. Al Assessment of any noise problem involves a though there are many notable textbooks which knowledge of the instrumentation available for deal primarily with the physics (or theory) of measurements, the limitations of this instru sound, and others which treat noise control in mentation, the appropriate procedures for mak a strictly practical (and sometimes even empir ing the measurements with the instrumentation, ical) manner, there are few textbooks that pro and the methods by which the measured data vide a bridging between the necessary under can be analyzed. Chapter 3 provides an up-to standing of the fundamentals of sound (its date coverage of these requirements, including generation, propagation, measurement) and the a section on one of the newest and most valu application of these fundamentals to its control. able tools in noise studies-sound intensity This book provides that link. measurement. The capability of being able to The text presents noise control primarily at measure sound intensity as compared with con the introductory level."
Our everyday life is in?uenced by many unexpected (dif?cult to predict) events usually referred as a chance. Probably, we all are as we are due to the accumulation point of a multitude of chance events. Gambling games that have been known to human beings nearly from the beginning of our civilization are based on chance events. These chance events have created the dream that everybody can easily become rich. This pursuit made gambling so popular. This book is devoted to the dynamics of the mechanical randomizers and we try to solve the problem why mechanical device (roulette) or a rigid body (a coin or a die) operating in the way described by the laws of classical mechanics can behave in such a way and produce a pseudorandom outcome. During mathematical lessons in primary school we are taught that the outcome of the coin tossing experiment is random and that the probability that the tossed coin lands heads (tails) up is equal to 1/2. Approximately, at the same time during physics lessons we are told that the motion of the rigid body (coin is an example of suchabody)isfullydeterministic. Typically,studentsarenotgiventheanswertothe question Why this duality in the interpretation of the simple mechanical experiment is possible? Trying to answer this question we describe the dynamics of the gambling games based on the coin toss, the throw of the die, and the roulette run.
This text 1s designed to introduce the fundamentals of esti mation to engineers, scientists, and applied mathematicians. The level of the presentation should be accessible to senior under graduates and should prove especially well-suited as a self study guide for practicing professionals. My primary motivation for writing this book 1s to make a significant contribution toward minimizing the painful process most newcomers must go through in digesting and applying the theory. Thus the treatment 1s intro ductory and essence-oriented rather than comprehensive. While some original material 1s included, the justification for this text lies not in the contribution of dramatic new theoretical re sults, but rather in the degree of success I believe that I have achieved in providing a source from which this material may be learned more efficiently than through study of an existing text or the rather diffuse literature. This work is the outgrowth of the author's mid-1960's en counter with the subject while motivated by practical problems aSSociated with space vehicle orbit determination and estimation of powered rocket trajectories. The text has evolved as lecture notes for short courses and seminars given to professionals at Pr>efaae various private laboratories and government agencies, and during the past six years, in conjunction with engineering courses taught at the University of Virginia. To motivate the reader's thinking, the structure of a typical estimation problem often assumes the following form: * Given a dynamical system, a mathematical model is hypothesized based upon the experience of the investigator.
The study of physics has changed in character, mainly due to the passage from the analyses of linear systems to the analyses of nonlinear systems. Such a change began, it goes without saying, a long time ago but the qualitative change took place and boldly evolved after the understanding of the nature of chaos in nonlinear s- tems. The importance of these systems is due to the fact that the major part of physical reality is nonlinear. Linearity appears as a result of the simpli?cation of real systems, and often, is hardly achievable during the experimental studies. In this book, we focus our attention on some general phenomena, naturally linked with nonlinearity where chaos plays a constructive part. The ?rst chapter discusses the concept of chaos. It attempts to describe the me- ing of chaos according to the current understanding of it in physics and mat- matics. The content of this chapter is essential to understand the nature of chaos and its appearance in deterministic physical systems. Using the Turing machine, we formulate the concept of complexity according to Kolmogorov. Further, we state the algorithmic theory of Kolmogorov-Martin-Lof ] randomness, which gives a deep understanding of the nature of deterministic chaos. Readers will not need any advanced knowledge to understand it and all the necessary facts and de?nitions will be explained."
This volume covers the interdisciplinary field of disaster mitigatition against earthquakes with special emphasis on prevention of total collapse of existing low rise buildings towards reduction of life losses and economical assets. Rehabilitation of thousands of low-rise buildings in many big cities located in earthquake prone areas, is practically impossible even though there are experimentally and analytically approved intervention techniques to protect these existing buildings. It is simply not possible to find a proper way and proper amount of financial support to do this job. It will be more realistic to change the target to be achieved in a relatively short time, especially if time shortage starts to become the most critical issue. The new target can be specified as the prevention of total collapse of low-rise low-cost existing buildings, at least to save as much lives and property as possible. Simple prescriptive techniques, which can be implemented by the building owners, should be prepared. The cost of the improvement techniques, all kinds of legal, economical and social issues for convincing people, and promotions such as tax exemptions should be discussed in detail. Writers of all chapters are leading researchers and engineers working in the field of structural and earthquake engineering. The book will start with an introduction chapter written by Prof. Helmut Krawinkler of Stanford University. In this chapter, past and present of studies towards seismically safe design and construction will be introduced, as well as potential future trends in structural and earthquake engineering. In other chapters, different subjects will be presented under three main titles, namely; determination of seismic risks, seismic safety assessment of existing buildings, and measures for prevention of total collapse.
Emergence and complexity refer to the appearance of higher-level properties and behaviours of a system that obviously comes from the collective dynamics of that system's components. These properties are not directly deducible from the lower-level motion of that system. Emergent properties are properties of the "whole'' that are not possessed by any of the individual parts making up that whole. Such phenomena exist in various domains and can be described, using complexity concepts and thematic knowledges. This book highlights complexity modelling through dynamical or behavioral systems. The pluridisciplinary purposes, developed along the chapters, are able to design links between a wide-range of fundamental and applicative Sciences. Developing such links - instead of focusing on specific and narrow researches - is characteristic of the Science of Complexity that we try to promote by this contribution.
The paradigm of complexity is pervading both science and engineering, le- ing to the emergence of novel approaches oriented at the development of a systemic view of the phenomena under study; the de?nition of powerful tools for modelling, estimation, and control; and the cross-fertilization of di?erent disciplines and approaches. One of the most promising paradigms to cope with complexity is that of networked systems. Complex, dynamical networks are powerful tools to model, estimate, and control many interesting phenomena, like agent coordination, synch- nization, social and economics events, networks of critical infrastructures, resourcesallocation, informationprocessing, controlovercommunicationn- works, etc. Advances in this ?eld are highlighting approaches that are more and more oftenbasedondynamicalandtime-varyingnetworks, i.e.networksconsisting of dynamical nodes with links that can change over time. Moreover, recent technological advances in wireless communication and decreasing cost and size of electronic devices are promoting the appearance of large inexpensive interconnected systems, each with computational, sensing and mobile ca- bilities. This is fostering the development of many engineering applications, which exploit the availability of these systems of systems to monitor and control very large-scale phenomena with ?ne resoluti
How is free will possible in the light of the physical and chemical underpinnings of brain activity and recent neurobiological experiments? How can the emergence of complexity in hierarchical systems such as the brain, based at the lower levels in physical interactions, lead to something like genuine free will? The nature of our understanding of free will in the light of present-day neuroscience is becoming increasingly important because of remarkable discoveries on the topic being made by neuroscientists at the present time, on the one hand, and its crucial importance for the way we view ourselves as human beings, on the other. A key tool in understanding how free will may arise in this context is the idea of downward causation in complex systems, happening coterminously with bottom up causation, to form an integral whole. Top-down causation is usually neglected, and is therefore emphasized in the other part of the book's title. The concept is explored in depth, as are the ethical and legal implications of our understanding of free will. This book arises out of a workshop held in California in April of 2007, which was chaired by Dr. Christof Koch. It was unusual in terms of the breadth of people involved: they included physicists, neuroscientists, psychiatrists, philosophers, and theologians. This enabled the meeting, and hence the resulting book, to attain a rather broader perspective on the issue than is often attained at academic symposia. The book includes contributions by Sarah-Jayne Blakemore, George F. R. Ellis , Christopher D. Frith, Mark Hallett, David Hodgson, Owen D. Jones, Alicia Juarrero, J. A. Scott Kelso, Christof Koch, Hans Kung, Hakwan C. Lau, Dean Mobbs, Nancey Murphy, William Newsome, Timothy O'Connor, Sean A.. Spence, and Evan Thompson.
This volume contains summaries of lectures and contributed papers delivered at an International Summer School on "Dynamical Phenomena at Surfaces, I nterfaces and Superl atti ces" hel d at the Ettore Maj orana Centre for Sci en- tific Culture, Erice (Sicily), Italy, July 1-13, 1984. The School was orga- ni zed under the auspi ces of the Surfaces and Interfaces Secti on of the Condensed Matter Division of the European Physical Society as the sixth course in the series on Materials Science and Technology. Approximately 60 parti c i pants from all regi ons of Europe, the Uni ted States, and further afield - Hong Kong, China, India - were able to take part in a program of 45 lectures and 11 contributed talks, which covered most of the solid-state aspects of the subject. In recent years, there has been an explosion of interest in the proper- ties of carefully prepared surfaces, interfaces, and multilayer thin films. This advance in research has received its impetus from the technological re- levance of surfaces and interfacial phenomena associated with heterogeneous catalysis, corrosion, and, particularly, new developments in microelectronics. One of the most important developments to emerge over the past decade has been our ability to prepare ultra-thin structures at the submicron level, i. e. , to engineer low-dimensional solids at the atomic-scale level.
Intended for engineers who deal with vibrations of rods and shells in their everyday practice but who also wish to understand the subject from the mathematical point-of-view, the results contained here concerning high-frequency vibrations may be new to many. The book serves equally well as an advanced textbook, while remaining of interest to mathematicians who seek applications of the variational and asymptotic methods in elasticity and piezoelectricity. Only a minimum knowledge in advanced calculus and continuum mechanics is assumed on the part of the reader. |
You may like...
Seismic Performance Analysis of Concrete…
Gaohui Wang, Wenbo Lu, …
Hardcover
R2,817
Discovery Miles 28 170
Guidance, Navigation, and Control for…
Yongchun Xie, Changqing Chen, …
Hardcover
R5,040
Discovery Miles 50 400
Vibration Engineering and Technology of…
Jose-Manoel Balthazar
Hardcover
R5,508
Discovery Miles 55 080
Proceedings of IncoME-V & CEPE Net-2020…
Dong Zhen, Dong Wang, …
Hardcover
R8,289
Discovery Miles 82 890
Noise and Vibration Mitigation for Rail…
Geert Degrande, Geert Lombaert, …
Hardcover
R5,586
Discovery Miles 55 860
Model Reduction of Complex Dynamical…
Peter Benner, Tobias Breiten, …
Hardcover
R3,734
Discovery Miles 37 340
Dynamics - Theory and Application of…
Carlos M Roithmayr, Dewey H. Hodges
Hardcover
R1,285
Discovery Miles 12 850
|