![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids > Dynamics & vibration
The EUCOMES08, Second European Conference on Mechanism Science is the second event of a series that has been started in 2006 as a conference activity for an European community working in Mechanism Science. The ?rst event was held in Obergurgl, Austria in 2006. This year EUCOMES08 Conference has come to Cassino in Italy taking place from 17 to 20 September 2008. TheaimoftheEUCOMESConference istobringtogetherEuropean researchers, industry professionals and students from the broad ranges of disciplines referring to Mechanism Science, in an intimate, collegial and stimulating environment. In this second event we have received an increased attention to the initiative, as canbeseenbythefactthattheEUCOMES08Proceedingswillcontaincontributions by authors even from all around the world. This means also that there is a really interest to have not only a conference frame but even a need of aggregation for an European Community well identi?ed in Mechanism Science with the aim to strengthen common views and collaboration activities among European researchers and institutions. I believe that a reader will take advantage of the papers in these Proceedings with further satisfaction and motivation for her or his work. These papers cover the wide ?eld of the Mechanism Science. The program of EUCOMES08 Conference has included technical sessions with oral presentations, which, together with informal conversations during the social program, have enabled to offer wide opportunities to share experiences and discuss scienti?c achievements and current trends in the areas encompassed by the EUCOMES08 conference.
Decentralized Control and Filtering provides a rigorous framework for examining the analysis, stability and control of large-scale systems, addressing the difficulties that arise because dimensionality, information structure constraints, parametric uncertainty and time-delays. This monograph serves three purposes: it reviews past methods and results from a contemporary perspective; it examines presents trends and approaches and to provide future possibilities; and it investigates robust, reliable and/or resilient decentralized design methods based on a framework of linear matrix inequalities. As well as providing an overview of large-scale systems theories from the past several decades, the author presents key modern concepts and efficient computational methods. Representative numerical examples, end-of-chapter problems, and typical system applications are included, and theoretical developments and practical applications of large-scale dynamical systems are discussed in depth.
Due to strong potential applications and more demanding requirements imposed upon long and thick cylindrical structures, there has been increasing research and development activities during recent years in the field of vibration and passive vibration control of these types of structures. An important step in the study of cylindrical structures is the determination of their vibration modal characteristics. This modal information plays a key role in the design and vibration suppression of these structures when subjected to dynamic excitations. Most reported studies on the dynamic response of cylindrical structures have been restricted to the application of the shell theories. These theories are based on a number of simplifying assumptions. The most important of which is, the considered shell must be relatively thin to assume constant stresses within the cylinder. Therefore, due to this limitation, shell theories are inadequate to accurately describe all possible vibration modes in thick cylindrical structures. The primary scope of this book is to address these problems by applying the theory of elasto-dynamics.
Dynamic Failure of Materials and Structures discusses the topic of dynamic loadings and their effect on material and structural failure. Since dynamic loading problems are very difficult as compared to their static counterpart, very little information is currently available about dynamic behavior of materials and structures. Topics covered include the response of both metallic as well as polymeric composite materials to blast loading and shock loadings, impact loadings and failure of novel materials under more controlled dynamic loads. These include response of soft materials that are important in practical use but have very limited information available on their dynamic response. Dynamic fragmentation, which has re-emerged in recent years has also been included. Both experimental as well as numerical aspects of material and structural response to dynamic loads are discussed. Written by several key experts in the field, Dynamic Failure of Materials and Structures will appeal to graduate students and researchers studying dynamic loadings within mechanical and civil engineering, as well as in physics and materials science.
Noise is ubiquitous in nature and in man-made systems. Noise in oscillators perturbs high-technology devices such as time standards or digital communication systems. The understanding of its algebraic structure is thus of vital importance. The book addresses both the measurement methods and the understanding of quantum, 1/f and phase noise in systems such as electronic amplifiers, oscillators and receivers, trapped ions, cosmic ray showers and in commercial applications. A strong link between 1/f noise and number theory is emphasized. The twenty papers in the book are comprehensive versions of talks presented at a school in Chapelle des Bois (Jura, France) held from April 6 to 10, 1999, by engineers, physisicts and mathematicians.
This book focuses treatable This class on exactly many' body problems. does not include most We are therefore reminded "of physical problems. the of the man home late at after an alcoholic who, story returning night the for his under he was a knew, evening, scanning ground key lamppost; be that he had it somewhere but under the to sure, dropped else, only Yet was there to conduct a searcW' . light lamppost enough proper we feel the interest for such models is nowadays sufficiently widespread because of their their mathematical relevance and their multi beauty, farious that need be made for no our apologies applicative potential choice. In whoever undertakes to read this book will know from any case, its title what she is in for! Yet this title a of it some may require explanations: gloss (including its extended inside front follows. version, see cover) and nonrelativistic "Classical" we mean nonquantal (although By consider the which indeed some are Ruijsenaars Schneider models, treated in this relativistic versions as known, nonre book, of, previously lativistic is focussed see our on models; below): presentation mainly of whose time evolution is determined many body point particles systems Newtonian of motion to by equations (acceleration proportional force).
The International Conference on the Theory of Machines and Mechanisms is organized every four years, under the auspices of the International Federation for the Promotion of Mechanism and Machine Science (IFToMM) and the Czech Society for Mechanics. This eleventh edition of the conference took place at the Technical University of Liberec, Czech Republic, 4-6 September 2012. This volume offers an international selection of the most important new results and developments, in 73 papers, grouped in seven different parts, representing a well-balanced overview, and spanning the general theory of machines and mechanisms, through analysis and synthesis of planar and spatial mechanisms, dynamics of machines and mechanisms, linkages and cams, computational mechanics, rotor dynamics, biomechanics, mechatronics, vibration and noise in machines, optimization of mechanisms and machines, control and monitoring systems of machines, accuracy and reliability of machines and mechanisms, robots and manipulators to the mechanisms of textile machines.
"Machining dynamics: Frequency response to improved productivity" will train engineers and students in the practical application of machining dynamics, with a particular focus on milling. The book is arranged such that the steps required to improve machining productivity through chatter avoidance and reduced surface location error (forced vibrations resulting in part geometric errors) are clearly evident. The following topics are covered in detail: modal analysis, including experimental methods, to obtain the tool point frequency response function; descriptions of turning and milling, including force modeling, time domain simulation, stability lobe diagram algorithms, and surface location error calculation for milling; and receptance coupling methods for tool point frequency response prediction, including beam theory. Numerical examples are included, as well as the MATLAB code used to develop the figures.
Chaos and nonlinear dynamics initially developed as a new emergent field with its foundation in physics and applied mathematics. The highly generic, interdisciplinary quality of the insights gained in the last few decades has spawned myriad applications in almost all branches of science and technology-and even well beyond. Wherever the quantitative modeling and analysis of complex, nonlinear phenomena are required, chaos theory and its methods can play a key role. This second volume concentrates on reviewing further relevant, contemporary applications of chaotic nonlinear systems as they apply to the various cutting-edge branches of engineering. This encompasses, but is not limited to, topics such as the spread of epidemics; electronic circuits; chaos control in mechanical devices; secure communication; and digital watermarking. Featuring contributions from active and leading research groups, this collection is ideal both as a reference work and as a 'recipe book' full of tried and tested, successful engineering applications.
Since the 1970's, an increasing amount of specialized research has focused on the problems created by instability of internal flow in hydroelectric power plants. However, progress in this field is hampered by the inter disciplinary nature of the subject, between fluid mechanics, structural mechanics and hydraulic transients. Flow-induced Pulsation and Vibration in Hydroelectric Machinery provides a compact guidebook explaining the many different underlying physical mechanisms and their possible effects. Typical phenomena are described to assist in the proper diagnosis of problems and various key strategies for solution are compared and considered with support from practical experience and real-life examples. The link between state-of the-art CFD computation and notorious practical problems is discussed and quantitative data is provided on normal levels of vibration and pulsation so realistic limits can be set for future projects. Current projects are also addressed as the possibilities and limitations of reduced-scale model tests for prediction of prototype performance are explained. Engineers and project planners struggling with the practical problems will find Flow-induced Pulsation and Vibration in Hydroelectric Machinery to be a comprehensive and convenient reference covering key topics and ideas across a range of relevant disciplines.
Humans have always been fascinated with the concept of artificial life and the construction of machines that look and behave like people. As the field of robotics evolves, it demands continuous development of successful systems with high-performance characteristics for practical applications. Advanced Mechanics in Robotic Systems illustrates original and ambitious mechanical designs and techniques for developing new robot prototypes with successful mechanical operational skills. Case studies are focused on projects in mechatronics that have high growth expectations: humanoid robots, robotics hands, mobile robots, parallel manipulators, and human-centred robots. A good control strategy requires good mechanical design, so a chapter has also been devoted to the description of suitable methods for control architecture design. Readers of Advanced Mechanics in Robotic Systems will discover novel designs for relevant applications in robotic fields, that will be of particular interest to academic and industry-based researchers.
Topics in Modal Analysis I, Volume 5. Proceedings of the 30th IMAC, A Conference and Exposition on Structural Dynamics, 2012, the fifth volume of six from the Conference, brings together 53 contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on: Modal Parameter Identification Damping of Materials and Members New Methods Structural Health Monitoring Processing Modal Data Operational Modal Analysis Damping Excitation Methods Active Control Damage Detection for Civil Structures System Identification: Applications
Topics in Modal Analysis II, Volume 6: Proceedings of the 30th IMAC, A Conference and Exposition on Structural Dynamics, 2012, is the sixth volume of six from the Conference and brings together 65 contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on: Aerospace, Acoustics, Energy Harvesting, Shock and Vibration, Finite Element, Structural Health Monitoring, Biodynamics Experimental Techniques, Damage Detection, Rotating Machinery, Sports Equipment Dynamics, Aircraft/Aerospace.
This fourth issue on "progress in turbulence" is based on the fourth ITI conference (ITI interdisciplinary turbulence initiative), which took place in Bertinoro, North Italy. Leading researchers from the engineering and physical sciences presented latest results in turbulence research. Basic as well as applied research is driven by the rather notorious difficult and essentially unsolved problem of turbulence. In this collection of contributions clear progress can be seen in different aspects, ranging from new quality of numerical simulations to new concepts of experimental investigations and new theoretical developments. The importance of turbulence is shown for a wide range of applications including: combustion, energy, flow control, urban flows, are few examples found in this volume. A motivation was to bring fundamentals of turbulence in connection with renewable energy. This lead us to add a special topic relevant to the impact of turbulence on the wind energy conversion. The structure of the present book is as such that contributions have been bundled according to covering topics i.e. I Basic Turbulence Aspects, II Particle Laden Flows, III Modeling and Simulations, IV, Experimental Methods, V Special Flows, VI Atmospheric Boundary Layer, VII Boundary Layer, VIII Wind Energy and IX Convection. This book is dedicated to the memory of Prof. Tim Nickels. Shortly after giving an invited lecture at the 4th ITI conference, the turbulence community lost a world-class scientist, a friend and devoted family man.
This book is of interest to researchers inquiring about modern topics and methods in the kinematics, control and design of robotic manipulators. It considers the full range of robotic systems, including serial, parallel and cable driven manipulators, both planar and spatial. The systems range from being less than fully mobile to kinematically redundant to overconstrained. In addition to recognized areas, this book also presents recent advances in emerging areas such as the design and control of humanoids and humanoid subsystems, and the analysis, modeling and simulation of human body motions, as well as the mobility analysis of protein molecules and the development of machines which incorporate man.
"Topics in Experimental Dynamics Substructuring and Wind Turbine Dynamics, Volume 2, Proceedings of the 30th IMAC, A Conference and Exposition on Structural Dynamics, 2012, "the second volume of six from the Conference, brings together 31 contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics."
The articles of this book were reported and discussed at the fifth international symposium on Advances in Robot Kinematics. As is known, the first symposium of this series was organised in 1988 in Ljubljana. The following meetings took place every other year in Austria, Italy, and Slovenia (Linz, Ferrara, Ljubljana, Portoroz Bernardin). It must be emphasised that the symposia run under the patronage of the International Federation for the Theory of Machinesand Mechanisms, IFToMM. In this period, Advances in Robot Kinematics has been able to attract the most outstanding authors in the area and also to create an optimum combination of a scientific pragmatism and a friendly atmosphere. Hence, it has managed to survive in a strong competition of many international conferences and meetings. In the most ancient way, robot kinematics is regarded as an application of the kinematics of rigid hodies. However, there are topics and problems that are typical for robot kinematics that cannot easily be found in any other scientific field. It is our belief that the initiative of Advances in Robot Kinematics has contributed to develop a remarkable scientific community. The present book is of interest to researchers, doctoral students and teachers, engineers and mathematicians specialising in kinematics of robots and mechanisms, mathematical modelling, simulation, design, and control of robots."
Real-time model predictive controller (MPC) implementation in active vibration control (AVC) is often rendered difficult by fast sampling speeds and extensive actuator-deformation asymmetry. If the control of lightly damped mechanical structures is assumed, the region of attraction containing the set of allowable initial conditions requires a large prediction horizon, making the already computationally demanding on-line process even more complex. "Model Predictive Vibration Control" provides insight into the predictive control of lightly damped vibrating structures by exploring computationally efficient algorithms which are capable of low frequency vibration control with guaranteed stability and constraint feasibility. In addition to a theoretical primer on active vibration damping and model predictive control, "Model Predictive Vibration Control" provides a guide through the necessary steps in understanding the founding ideas of predictive control applied in AVC such as: . the implementation of computationally efficient algorithms . control strategies in simulation and experiment and . typical hardware requirements for piezoceramics actuated smart structures. The use of a simple laboratory model and inclusion of over 170 illustrations provides readers with clear and methodical explanations, making "Model Predictive Vibration Control" the ideal support material for graduates, researchers and industrial practitioners with an interest in efficient predictive control to be utilized in active vibration attenuation. "
Ground Vehicle Dynamics is devoted to the mathematical modelling and dynamical analysis of ground vehicle systems composed of the vehicle body, the guidance and suspension devices and the corresponding guideway. Automobiles on uneven roads and railways on flexible tracks are prominent representatives of ground vehicle systems. All these different kinds of systems are treated in a common way by means of analytical dynamics and control theory. In addition to a detailed modelling of vehicles as multibody systems, the contact theory for rolling wheels and the modelling of guideways by finite element systems as well as stochastic processes are presented. As a particular result of this integrated approach the state equations of the global systems are obtained including the complete interactions between the subsystems considered as independent modules. The fundamentals of vehicle dynamics for longitudinal, lateral and vertical motions and vibrations of automobiles and railways are discussed in detail.
The papers in this volume present an overview of the general aspects and practical applications of dynamic inverse methods, through the interaction of several topics, ranging from classical and advanced inverse problems in vibration, isospectral systems, dynamic methods for structural identification, active vibration control and damage detection, imaging shear stiffness in biological tissues, wave propagation, to computational and experimental aspects relevant for engineering problems.
"Energy Methods in Dynamics "is a textbook based on the lectures given by the first author at Ruhr University Bochum, Germany. Its aim is to help students acquire both a good grasp of the first principles from which the governing equations can be derived, and the adequate mathematical methods for their solving. Its distinctive features, as seen from the title, lie in the systematic and intensive use of Hamilton's variational principle and its generalizations for deriving the governing equations of conservative and dissipative mechanical systems, and also in providing the direct variational-asymptotic analysis, whenever available, of the energy and dissipation for the solution of these equations. It demonstrates that many well-known methods in dynamics like those of Lindstedt-Poincare, Bogoliubov-Mitropolsky, Kolmogorov-Arnold-Moser (KAM), Wentzel Kramers Brillouin (WKB), and Whitham are derivable from this variational-asymptotic analysis. This second edition includes the solutions to all exercises as well as some new materials concerning amplitude and slope modulations of nonlinear dispersive waves."
Nonlinear Approaches in Engineering Applications focuses on nonlinear phenomena that are common in the engineering field. The nonlinear approaches described in this book provide a sound theoretical base and practical tools to design and analyze engineering systems with high efficiency and accuracy and with less energy and downtime. Presented here are nonlinear approaches in areas such as dynamic systems, optimal control and approaches in nonlinear dynamics and acoustics. Coverage encompasses a wide range of applications and fields including mathematical modeling and nonlinear behavior as applied to microresonators, nanotechnologies, nonlinear behavior in soil erosion,nonlinear population dynamics, and optimization in reducing vibration and noise as well as vibration in triple-walled carbon nanotubes.
"Control from MEMS to Atoms" illustrates the use of control and control systems as an essential part of functioning integrated systems. The book is organized according to the dimensional scale of the problem, starting with micro-scale systems and ending with atomic-scale systems. Similar to macro-scale machines and processes, control systems can play a major role in improving the performance of micro- and nano-scale systems and in enabling new capabilities that would otherwise not be possible. However, the majority of problems at these scales present many new challenges that go beyond the current state-of-the-art in control engineering. This is a result of the multidisciplinary nature of micro/nanotechnology, which requires the merging of control engineering with physics, biology and chemistry.
We present an improved and enlarged version of our book Nonlinear - namics of Chaotic and Stochastic Systems published by Springer in 2002. Basically, the new edition of the book corresponds to its ?rst version. While preparingthiseditionwemadesomeclari?cationsinseveralsectionsandalso corrected the misprints noticed in some formulas. Besides, three new sections have been added to Chapter 2. They are "Statistical Properties of Dynamical Chaos," "E?ects of Synchronization in Extended Self-Sustained Oscillatory Systems," and "Synchronization in Living Systems." The sections indicated re?ect the most interesting results obtained by the authors after publication of the ?rst edition. We hope that the new edition of the book will be of great interest for a widesectionofreaderswhoarealreadyspecialistsorthosewhoarebeginning research in the ?elds of nonlinear oscillation and wave theory, dynamical chaos, synchronization, and stochastic process theory. Saratov, Berlin, and St. Louis V.S. Anishchenko November 2006 A.B. Neiman T.E. Vadiavasova V.V. Astakhov L. Schimansky-Geier Preface to the First Edition Thisbookisdevotedtotheclassicalbackgroundandtocontemporaryresults on nonlinear dynamics of deterministic and stochastic systems. Considerable attentionisgiventothee?ectsofnoiseonvariousregimesofdynamicsystems with noise-induced order. On the one hand, there exists a rich literature of excellent books on n- linear dynamics and chaos; on the other hand, there are many marvelous monographs and textbooks on the statistical physics of far-from-equilibrium andstochasticprocesses.Thisbookisanattempttocombinetheapproachof nonlinear dynamics based on the deterministic evolution equations with the approach of statistical physics based on stochastic or kinetic equations. One of our main aims is to show the important role of noise in the organization and properties of dynamic regimes of nonlinear dissipative systems.
Research and development of various parallel mechanism applications in engineering are now being performed more and more actively in every industrial field. Parallel robot based machine tools development is considered a key technology of robot applications in manufacturing industries. The material covered here describes the basic theory, approaches, and algorithms in the field of parallel robot based machine tools. In addition families of new alternative mechanical architectures which can be used for machine tools with parallel architecture are introduced. Given equal importance is the design of mechanism systems such as kinematic analysis, stiffness analysis, kinetostatic modeling, and optimization. |
You may like...
Dark Silicon and Future On-chip Systems…
Suyel Namasudra, Hamid Sarbazi-Azad
Hardcover
R3,940
Discovery Miles 39 400
Global Competition in Capital Goods - An…
Robert S. Eckley
Hardcover
Dynamically Reconfigurable Systems…
Marco Platzner, Norbert Wehn
Hardcover
R2,902
Discovery Miles 29 020
|