![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids > Dynamics & vibration
The second edition of the book includes a new chapter on the study of composition operators on the Hardy space and their complete characterization by Gordon and Hedenmalm. The book is devoted to Diophantine approximation, the analytic theory of Dirichlet series and their composition operators, and connections between these two domains which often occur through the Kronecker approximation theorem and the Bohr lift. The book initially discusses Harmonic analysis, including a sharp form of the uncertainty principle, Ergodic theory and Diophantine approximation, basics on continued fractions expansions, and the mixing property of the Gauss map and goes on to present the general theory of Dirichlet series with classes of examples connected to continued fractions, Bohr lift, sharp forms of the Bohnenblust-Hille theorem, Hardy-Dirichlet spaces, composition operators of the Hardy-Dirichlet space, and much more. Proofs throughout the book mix Hilbertian geometry, complex and harmonic analysis, number theory, and ergodic theory, featuring the richness of analytic theory of Dirichlet series. This self-contained book benefits beginners as well as researchers.
This book presents select papers presented during the 6th National Symposium on Rotor Dynamics, held at CSIR-NAL, Bangalore, and focuses on the latest trends in rotor dynamics and various challenges encountered in the design of rotating machinery. The book is of interest to researchers from mechanical, aerospace, tribology and power industries, engineering service providers and academics.
This book reports on the latest numerical and experimental findings in the field of high-lift technologies. It covers interdisciplinary research subjects relating to scientific computing, aerodynamics, aeroacoustics, material sciences, aircraft structures, and flight mechanics. The respective chapters are based on papers presented at the Final Symposium of the Collaborative Research Center (CRC) 880, which was held on December 17-18, 2019 in Braunschweig, Germany. The conference and the research presented here were partly supported by the CRC 880 on "Fundamentals of High Lift for Future Civil Aircraft," funded by the DFG (German Research Foundation). The papers offer timely insights into high-lift technologies for short take-off and landing aircraft, with a special focus on aeroacoustics, efficient high-lift, flight dynamics, and aircraft design.
This book offers the first comprehensive and practice-oriented guide to condition monitoring algorithms in MATLAB (R). After a concise introduction to vibration theory and signal processing techniques, the attention is moved to the algorithms. Each signal processing algorithm is presented in depth, from the theory to the application, and including extensive explanations on how to use the corresponding toolbox in MATLAB (R). In turn, the book introduces various techniques for synthetic signals generation, as well as vibration-based analysis techniques for large data sets. A practical guide on how to directly access data from industrial condition monitoring systems (CMS) using MATLAB (R) .NET Libraries is also included. Bridging between research and practice, this book offers an extensive guide on condition monitoring algorithms to both scholars and professionals. "Condition Monitoring Algorithms in MATLAB (R) is a great resource for anyone in the field of condition monitoring. It is a unique as it presents the theory, and a number of examples in Matlab (R), which greatly improve the learning experience. It offers numerous examples of coding styles in Matlab, thus supporting graduate students and professionals writing their own codes." Dr. Eric Bechhoefer Founder and CEO of GPMS Developer of the Foresight MX Health and Usage Monitoring System
The book examines advanced, non-standardized techniques that have been developed for determining different properties of cement paste, mortar and concrete, and provides state-of-the-art information on methods for monitoring hydration-induced changes in cement-based materials (CBMs). These methods are often nondestructive and allow quasi-continuous monitoring covering the time span from placement of the material to formation of a fully hardened cement composite. The book also presents various applications of acoustic emission for characterizing fresh concrete, recent developments in ultrasonic methods for characterizing CBMs since placement, application of ambient response methods for measuring elastic modulus, methods for determining deformational characteristics of CBMs since setting and methods for in situ measurements of stresses in concrete elements during hardening.
This book focuses on unhealthy cyber-physical systems. Consisting of 14 chapters, it discusses recognizing the beginning of the fault, diagnosing the appearance of the fault, and stopping the system or switching to a special control mode known as fault-tolerant control. Each chapter includes the background, motivation, quantitative development (equations), and case studies/illustration/tutorial (simulations, experiences, curves, tables, etc.). Readers can easily tailor the techniques presented to accommodate their ad hoc applications.
This book provides a compact history of gears, by summarizing the main stages of their development and the corresponding gradual acquisition of engineering expertise, from the antiquity to the Renaissance and the twentieth century. This brief history makes no claim to be exhaustive, since the topic is so extensive, complex and fascinating that it deserves an entire encyclopedia. Despite its brevity, the book debunks a number of popular misconceptions, such as the belief that the first literary description of a gear was supplied by Aristotle. It disproves not only this myth, but also other peremptory statements and/or axiomatic assumptions that have no basis in written documents, archaeological findings or other factual evidence. The book is chiefly intended for students and lecturers, historians of science and scientists, and all those who want to learn about the genesis and evolution of this topic.
This book presents a finite and instantaneous screw theory for the development of robotic mechanisms. It addresses the analytical description and algebraic computation of finite motion, resulting in a generalized type synthesis approach. It then discusses the direct connection between topology and performance models, leading to an integrated performance analysis and design framework. The book then explores parameter uncertainty and multiple performance requirements for reliable, optimal design methods, and describes the error accumulation principle and parameter identification algorithm, to increase robot accuracy. It proposes a unified and generic methodology, and appliesto the invention, analysis, design, and calibration of robotic mechanisms. The book is intended for researchers, graduate students and engineers in the fields of robotic mechanism and robot design and applications.
This book compiles recent developments on sliding mode control theory and its applications. Each chapter presented in the book proposes new dimension in the sliding mode control theory such as higher order sliding mode control, event triggered sliding mode control, networked control, higher order discrete-time sliding mode control and sliding mode control for multi-agent systems. Special emphasis has been given to practical solutions to design involving new types of sliding mode control. This book is a reference guide for graduate students and researchers working in the domain for designing sliding mode controllers. The book is also useful to professional engineers working in the field to design robust controllers for various applications.
The EUCOMES08, Second European Conference on Mechanism Science is the second event of a series that has been started in 2006 as a conference activity for an European community working in Mechanism Science. The ?rst event was held in Obergurgl, Austria in 2006. This year EUCOMES08 Conference has come to Cassino in Italy taking place from 17 to 20 September 2008. TheaimoftheEUCOMESConference istobringtogetherEuropean researchers, industry professionals and students from the broad ranges of disciplines referring to Mechanism Science, in an intimate, collegial and stimulating environment. In this second event we have received an increased attention to the initiative, as canbeseenbythefactthattheEUCOMES08Proceedingswillcontaincontributions by authors even from all around the world. This means also that there is a really interest to have not only a conference frame but even a need of aggregation for an European Community well identi?ed in Mechanism Science with the aim to strengthen common views and collaboration activities among European researchers and institutions. I believe that a reader will take advantage of the papers in these Proceedings with further satisfaction and motivation for her or his work. These papers cover the wide ?eld of the Mechanism Science. The program of EUCOMES08 Conference has included technical sessions with oral presentations, which, together with informal conversations during the social program, have enabled to offer wide opportunities to share experiences and discuss scienti?c achievements and current trends in the areas encompassed by the EUCOMES08 conference.
This book provides a comprehensive review of fundamental issues in the dynamical modeling and vibration control design for several flexible mechanical systems, such as flexible satellites, flexible aerial refueling hoses, and flexible three-dimensional manipulators. Offering an authoritative reference guide to the dynamics and control of flexible mechanical systems, it equips readers to solve a host of problems concerning these systems. It provides not only a complete overview of flexible systems, but also a better understanding of the technical levels involved. The book is divided into ten chapters: Chapters 1 and 2 lay the foundations, while the remaining chapters explore several independent yet related topics in detail. The book's final chapter presents conclusions and recommendations for future research. Given its scope, the book is intended for researchers, graduate students, and engineers whose work involves control systems, flexible mechanical systems, and related areas.
This book presents select proceedings of the International Conference on Future Learning Aspects of Mechanical Engineering (FLAME 2020). The book focuses on latest research in mechanical engineering design and covers topics such as computational mechanics, finite element modeling, computer aided engineering and analysis, fracture mechanics, and vibration. The book brings together different aspects of engineering design and the contents will be useful for researchers and professionals working in this field.
This book presents the proceedings of the "5th International Interdisciplinary Chaos Symposium on Chaos and Complex Systems (CCS)." All Symposia in the series bring together scientists, engineers, economists and social scientists, creating a vivid forum for discussions on the latest insights and findings obtained in the areas of complexity, nonlinear dynamics and chaos theory, as well as their interdisciplinary applications. The scope of the latest Symposium was enriched with a variety of contemporary, interdisciplinary topics, including but not limited to: fundamental theory of nonlinear dynamics, networks, circuits, systems, biology, evolution and ecology, fractals and pattern formation, nonlinear time series analysis, neural networks, sociophysics and econophysics, complexity management and global systems.
This book presents the proceedings of the International Conference on Aerospace System Science and Engineering (ICASSE 2019), held in Toronto, Canada, on July 30-August 1, 2019, and jointly organized by the University of Toronto Institute for Aerospace Studies (UTIAS) and the Shanghai Jiao Tong University School of Aeronautics and Astronautics. ICASSE 2019 provided a forum that brought together experts on aeronautics and astronautics to share new ideas and findings. These proceedings present high-quality contributions in the areas of aerospace system science and engineering, including topics such as trans-space vehicle system design and integration, air vehicle systems, space vehicle systems, near-space vehicle systems, aerospace robotics and unmanned systems, communication, navigation and surveillance, aerodynamics and aircraft design, dynamics and control, aerospace propulsion, avionics systems, optoelectronic systems, and air traffic management.
This book draws together the most interesting recent results to emerge in mechanical engineering in Russia, providing a fascinating overview of the state of the art in the field in that country which will be of interest to a wide readership. A broad range of topics and issues in modern engineering are discussed, including dynamics of machines, materials engineering, structural strength and tribological behavior, transport technologies, machinery quality and innovations. The book comprises selected papers presented at the 8th conference "Modern Engineering: Science and Education", held at the Saint Petersburg State Polytechnic University in May 2019 with the support of the Russian Engineering Union. The authors are experts in various fields of engineering, and all of the papers have been carefully reviewed. The book will be of interest to mechanical engineers, lecturers in engineering disciplines and engineering graduates.
A unique approach to teaching particle and rigid body dynamics using solved illustrative examples and exercises to encourage self-learning The study of particle and rigid body dynamics is a fundamental part of curricula for students pursuing graduate degrees in areas involving dynamics and control of systems. These include physics, robotics, nonlinear dynamics, aerospace, celestial mechanics and automotive engineering, among others. While the field of particle and rigid body dynamics has not evolved significantly over the past seven decades, neither have approaches to teaching this complex subject. This book fills the void in the academic literature by providing a uniquely stimulating, "flipped classroom" approach to teaching particle and rigid body dynamics which was developed, tested and refined by the author and his colleagues over the course of many years of instruction at both the graduate and undergraduate levels. Complete with numerous solved illustrative examples and exercises to encourage self-learning in a flipped-classroom environment, Dynamics of Particles and Rigid Bodies: A Self-Learning Approach Provides detailed, easy-to-understand explanations of concepts and mathematical derivations Includes numerous flipped-classroom exercises carefully designed to help students comprehend the material covered without actually solving the problem for them Features an extensive chapter on electromechanical modelling of systems involving particle and rigid body motion Provides examples from the state-of-the-art research on sensing, actuation, and energy harvesting mechanisms Offers access to a companion website featuring additional exercises, worked problems, diagrams and a solutions manual Ideal as a textbook for classes in dynamics and controls courses, Dynamics of Particles and Rigid Bodies: A Self-Learning Approach is a godsend for students pursuing advanced engineering degrees who need to master this complex subject. It will also serve as a handy reference for professional engineers across an array of industrial domains.
This book presents the signal processing and data mining challenges encountered in drilling engineering, and describes the methods used to overcome them. In drilling engineering, many signal processing technologies are required to solve practical problems, such as downhole information transmission, spatial attitude of drillstring, drillstring dynamics, seismic activity while drilling, among others. This title attempts to bridge the gap between the signal processing and data mining and oil and gas drilling engineering communities. There is an urgent need to summarize signal processing and data mining issues in drilling engineering so that practitioners in these fields can understand each other in order to enhance oil and gas drilling functions. In summary, this book shows the importance of signal processing and data mining to researchers and professional drilling engineers and open up a new area of application for signal processing and data mining scientists.
This book presents solutions to control problems in a number of robotic systems and provides a wealth of worked-out examples with full analytical and numerical details, graphically illustrated to aid in reader comprehension. It also presents relevant studies on and applications of robotic system control approaches, as well as the latest findings from interdisciplinary theoretical studies. Featuring chapters on advanced control (fuzzy, neural, backstepping, sliding mode, adaptive, predictive, diagnosis, and fault-tolerant control), the book will equip readers to easily tailor the techniques to their own applications. Accordingly, it offers a valuable resource for researchers, engineers, and students in the field of robotic systems.
This book comprises the selected contributions from the 2nd World Congress on Condition Monitoring (WCCM 2019), held in Singapore in December 2019. The contents focus on digitalisation for condition monitoring with the emergence of the fourth industrial revolution (Industry 4.0) and the Industrial Internet-of-Things (IIoT). The book covers latest research findings in the areas of condition monitoring, structural health monitoring, and non-destructive testing which are relevant for many sectors including aerospace, automotive, civil, oil and gas, marine, and manufacturing industries. Different monitoring systems and non-destructive testing methods are discussed to avoid failures, increase lifespans, and reduce maintenance costs of equipment and machinery. The broad scope of the contents will make this book interesting for academics and professionals working in the areas of non-destructive evaluation and condition monitoring.
This book gathers the latest advances, innovations, and applications in the field of multibody and mechatronic systems. Topics addressed include the analysis and synthesis of mechanisms; dynamics of multibody systems; design algorithms for mechatronic systems; robots and micromachines; experimental validations; theory of mechatronic simulation; mechatronic systems for rehabilitation and assistive technologies; mechatronic systems for energy harvesting; virtual reality integration in multibody and mechatronic systems; multibody design in robotic systems; and control of mechatronic systems. The contents reflect the outcomes of the 7th International Symposium on Multibody Systems and Mechatronics (7th MuSMe) in 2020, within the framework of the FEIbIM Commission for Robotics and Mechanisms and IFToMM Technical Committees for Multibody Dynamics and for Robotics and Mechatronics.
This textbook draws on the authors' experience gained by teaching courses for engineering students on e.g. vehicle mechanics, vehicle system design, and chassis design; and on their practical experience as engineering designers for vehicle and chassis components at a major automotive company. The book is primarily intended for students of automotive engineering, but also for all technicians and designers working in this field. Other enthusiastic engineers will also find it to be a useful technical guide. The present volume (The Automotive Chassis - Volume 2: System Design) focuses on the automotive chassis as a system, providing readers with the knowledge needed to integrate the individual components described in Volume 1 in a complex system that satisfies customers' expectations. Special emphasis is given to factors influencing system performance, including: - the influence of the powertrain on vehicle performance. Conventional, hybrid and electric powertrains are considered; - factors influencing vehicles' handling performance; - factors influencing vehicles' comfort performance; and - factors influencing vehicles' stability and strategies for accident avoidance (active safety). In addition, this second volume thoroughly covers topics that are usually neglected in other books about the automotive chassis, such as: - the basics of vehicle aerodynamics; - internal combustion engines, electric motors and batteries; and - mathematical modeling tools. This thoroughly revised second edition has been updated to reflect the latest advances in electric and hybrid vehicles, electronic control systems and autonomous driving.
Dynamics of Coupled Structures, Volume 4: Proceedings of the 38th IMAC, A Conference and Exposition on Structural Dynamics, 2020, the fourth volume of eight from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of the Dynamics of Coupled Structures, including papers on: Methods for Dynamic Substructures Applications for Dynamic Substructures Interfaces & Substructuring Frequency Based Substructuring Transfer Path Analysis
Continuous-system simulation is an increasingly important tool for optimizing the performance of real-world systems. The book presents an integrated treatment of continuous simulation with all the background and essential prerequisites in one setting. It features updated chapters and two new sections on Black Swan and the Stochastic Information Packet (SIP) and Stochastic Library Units with Relationships Preserved (SLURP) Standard. The new edition includes basic concepts, mathematical tools, and the common principles of various simulation models for different phenomena, as well as an abundance of case studies, real-world examples, homework problems, and equations to develop a practical understanding of concepts.
Suitable for both individual and group learning, Engineering Acoustics focuses on basic concepts and methods to make our environments quieter, both in buildings and in the open air. The author s tutorial style derives from the conviction that understanding is enhanced when the necessity behind the particular teaching approach is made clear. He also combines mathematical derivations and formulas with extensive explanations and examples to deepen comprehension. Fundamental chapters on the physics and perception of sound precede those on noise reduction (elastic isolation) methods. The last chapter deals with microphones and loudspeakers. Moeser includes major discoveries by Lothar Cremer, including the optimum impedance for mufflers and the coincidence effect behind structural acoustic transmission. The appendix gives a short introduction on the use of complex amplitudes in acoustics. "
This book presents recent advances in dynamics and control of different types of energy systems. It covers research on dynamics and control in energy systems from different aspects, namely, combustion, multiphase flow, nuclear, chemical and thermal. The chapters start from the basic concepts so that this book can be useful even for researchers with very little background in the area. A dedicated chapter provides an overview on the fundamental aspects of the dynamical systems approach. The book will be of use to researchers and professionals alike. |
![]() ![]() You may like...
Vibration Engineering and Technology of…
Jose-Manoel Balthazar
Hardcover
R5,658
Discovery Miles 56 580
Active Control of Vibration
Christopher C. Fuller, S.J. Elliott, …
Paperback
Reference for Modern Instrumentation…
R.N. Thurston, Allan D. Pierce
Hardcover
R4,342
Discovery Miles 43 420
Geodetic Sciences - Theory, Applications…
Bihter Erol, Serdar Erol
Hardcover
R3,334
Discovery Miles 33 340
Reference for Modern Instrumentation…
R.N. Thurston, Allan D. Pierce
Hardcover
R3,675
Discovery Miles 36 750
Advances in Service and Industrial…
Said Zeghloul, Med Amine Laribi, …
Hardcover
R7,671
Discovery Miles 76 710
|