![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids > Dynamics & vibration
This compact monograph is focused on disturbance attenuation in nonsmooth dynamic systems, developing an H approach in the nonsmooth setting. Similar to the standard nonlinear H approach, the proposed nonsmooth design guarantees both the internal asymptotic stability of a nominal closed-loop system and the dissipativity inequality, which states that the size of an error signal is uniformly bounded with respect to the worst-case size of an external disturbance signal. This guarantee is achieved by constructing an energy or storage function that satisfies the dissipativity inequality and is then utilized as a Lyapunov function to ensure the internal stability requirements. Advanced H Control is unique in the literature for its treatment of disturbance attenuation in nonsmooth systems. It synthesizes various tools, including Hamilton-Jacobi-Isaacs partial differential inequalities as well as Linear Matrix Inequalities. Along with the finite-dimensional treatment, the synthesis is extended to infinite-dimensional setting, involving time-delay and distributed parameter systems. To help illustrate this synthesis, the book focuses on electromechanical applications with nonsmooth phenomena caused by dry friction, backlash, and sampled-data measurements. Special attention is devoted to implementation issues. Requiring familiarity with nonlinear systems theory, this book will be accessible to g raduate students interested in systems analysis and design, and is a welcome addition to the literature for researchers and practitioners in these areas.
This book summarizes the author's lifetime achievements, offering new perspectives and approaches in the field of metal cutting theory and its applications. The topics discussed include Non-Euclidian Geometry of Cutting Tools, Non-free Cutting Mechanics and Non-Linear Machine Tool Dynamics, applying non-linear science/complexity to machining, and all the achievements and their practical significance have been theoretically proved and experimentally verified.
This book presents essential studies and applications in the context of sliding mode control, highlighting the latest findings from interdisciplinary theoretical studies, ranging from computational algorithm development to representative applications. Readers will learn how to easily tailor the techniques to accommodate their ad hoc applications. To make the content as accessible as possible, the book employs a clear route in each paper, moving from background to motivation, to quantitative development (equations), and lastly to case studies/illustrations/tutorials (simulations, experiences, curves, tables, etc.). Though primarily intended for graduate students, professors and researchers from related fields, the book will also benefit engineers and scientists from industry.
By establishing an alternative foundation of control theory, this thesis represents a significant advance in the theory of control systems, of interest to a broad range of scientists and engineers. While common control strategies for dynamical systems center on the system state as the object to be controlled, the approach developed here focuses on the state trajectory. The concept of precisely realizable trajectories identifies those trajectories that can be accurately achieved by applying appropriate control signals. The resulting simple expressions for the control signal lend themselves to immediate application in science and technology. The approach permits the generalization of many well-known results from the control theory of linear systems, e.g. the Kalman rank condition to nonlinear systems. The relationship between controllability, optimal control and trajectory tracking are clarified. Furthermore, the existence of linear structures underlying nonlinear optimal control is revealed, enabling the derivation of exact analytical solutions to an entire class of nonlinear optimal trajectory tracking problems. The clear and self-contained presentation focuses on a general and mathematically rigorous analysis of controlled dynamical systems. The concepts developed are visualized with the help of particular dynamical systems motivated by physics and chemistry.
These are the Proceedings of the 6th International Symposium on Multibody Systems and Mechatronics (MUSME 2017) which was held in Florianopolis, Brazil, October 24-28, 2017. Topics addressed include analysis and synthesis of mechanisms; dynamics of multibody systems; design algorithms for mechatronic systems; simulation procedures and results; prototypes and their performance; robots and micromachines; experimental validations; theory of mechatronic simulation; mechatronic systems; and control of mechatronic systems. The MUSME 2017 Symposium was one of the activities of the FEIbIM Commission for Mechatronics and IFToMM technical Committees for Multibody Dynamics, Robotics and Mechatronics.
This book presents research results of PowerWeb, TU Delft's consortium for interdisciplinary research on intelligent, integrated energy systems and their role in markets and institutions. In operation since 2012, it acts as a host and information platform for a growing number of projects, ranging from single PhD student projects up to large integrated and international research programs. The group acts in an inter-faculty fashion and brings together experts from electrical engineering, computer science, mathematics, mechanical engineering, technology and policy management, control engineering, civil engineering, architecture, aerospace engineering, and industrial design. The interdisciplinary projects of PowerWeb are typically associated with either of three problem domains: Grid Technology, Intelligence and Society. PowerWeb is not limited to electricity: it bridges heat, gas, and other types of energy with markets, industrial processes, transport, and the built environment, serving as a singular entry point for industry to the University's knowledge. Via its Industry Advisory Board, a steady link to business owners, manufacturers, and energy system operators is provided.
Control of Noise and Structural Vibration presents a MATLAB (R)-based approach to solving the problems of undesirable noise generation and transmission by structures and of undesirable vibration within structures in response to environmental or operational forces. The fundamentals of acoustics, vibration and coupling between vibrating structures and the sound fields they generate are introduced including a discussion of the finite element method for vibration analysis. Following this, the treatment of sound and vibration control begins, illustrated by example systems such as beams, plates and double walls. Sensor and actuator placement is explained as is the idea of modal sensor-actuators. The design of appropriate feedback systems includes consideration of basic stability criteria and robust active structural acoustic control. Positive position feedback (PPF) and multimode control are also described in the context of loudspeaker-duct and loudspeaker-microphone models. The design of various components is detailed including the analog circuit for PPF, adaptive (semi-active) Helmholtz resonators and shunt piezoelectric circuits for noise and vibration suppression. The text makes extensive use of MATLAB (R) examples and these can be simulated using files available for download from the book's webpage at springer.com. End-of-chapter exercises will help readers to assimilate the material as they progress through the book. Control of Noise and Structural Vibration will be of considerable interest to the student of vibration and noise control and also to academic researchers working in the field. It's tutorial features will help practitioners who wish to update their knowledge with self-study.
Vibration and noise are two interrelated terms in the field of mechanical engineering. Vibration is caused by unbalanced inertial forces and moments whereas noise is the result of such vibrations. Noisy machines have always been a matter of concern. Lesser vibration ensures manufacturing to closer tolerances, lesser wear and tear, and longer fatigue life. Hence, a quieter machine is more cost-effective in the long run. It is now well understood that a quieter machine is in every way a better machine.This book deals with such industrial and automotive noise and vibration, their measurement and control. This textbook stresses on physical concepts and the application thereof to practical problems. The author's four decades of experience in teaching, research and industrial consultancy is reflected in the choice of the solved examples and unsolved problems.The book targets senior undergraduate students in mechanical engineering as well as designers of industrial machinery and layouts. It can readily be used for self-study by practicing designers and engineers.
This edited monograph contains research contributions on a wide range of topics such as stochastic control systems, adaptive control, sliding mode control and parameter identification methods. The book also covers applications of robust and adaptice control to chemical and biotechnological systems. This collection of papers commemorates the 70th birthday of Dr. Alexander S. Poznyak.
This book covers the topics of theoretical principles, dynamics model and algorithm, mission analysis, system design and experimental studies of space nets system, aiming to provide an initial framework in this field and serve as a ready reference for those interested. Space nets system represents a forefront field in future development of aerospace technologies. However, it involves new challenges and problems such as nonlinear and distorted nets structure, complex rigid flexible coupling dynamics, orbital transfer of space flexible composite and dynamics control. Currently, no comprehensive books on space nets dynamics and design are available, so potential readers can get to know the working mechanism, dynamics elements, and mission design of the space nets system from a Chinese perspective.
The volume contains 19 contributions by international experts in the field of multibody system dynamics, robotics and control. The book aims to bridge the gap between the modeling of mechanical systems by means of multibody dynamics formulations and robotics. In the classical approach, a multibody dynamics model contains a very high level of detail, however, the application of such models to robotics or control is usually limited. The papers aim to connect the different scientific communities in multibody dynamics, robotics and control. Main topics are flexible multibody systems, humanoid robots, elastic robots, nonlinear control, optimal path planning, and identification.
This thesis proposes novel designs of phononic crystal plates (PhPs) allowing ultra-wide controllability frequency ranges of guided waves at low frequencies, with promising structural and tunability characteristics. It reports on topology optimization of bi-material-layered (1D) PhPs allowing maximized relative bandgap width (RBW) at target filling fractions and demonstrates multiscale functionality of gradient PhPs. It also introduces a multi-objective topology optimization method for 2D porous PhPs allowing both maximized RBW and in-plane stiffness and addresses the critical role of considering stiffness in designing porous PhPs. The multi-objective topology optimization method is then expanded for designing 2D porous PhPs with deformation induced tunability. A variety of innovative designs are introduced which their maximized broadband RBW is enhanced by, is degraded by or is insensitive to external finite deformation. Not only does this book address the challenges of new topology optimization methods for computational design of phononic crystals; yet, it demonstrated the suitability and applicability of the topological designs by experimental validation. Furthermore, it offers a comprehensive review of the existing optimization-based approaches for the design of finite non-periodic acoustic metamaterial structures, acoustic metamaterial lattice structures and acoustic metamaterials under perfect periodicity.
This book covers a variety of topics in mechanics, with a special emphasis on material mechanics. It reports on fracture mechanics, fatigue of materials, stress-strain behaviours, as well as transferability problems and constraint effects in fracture mechanics. It covers different kind of materials, from metallic materials such as ferritic and austenitic steels, to composites, concrete, polymers and nanomaterials. Additional topics include heat transfer, quality control and reliability of structures and components. Furthermore, the book gives particular attention to new welding technologies such as STIR welding and spray metal coating, and to novel methods for quality control, such as Taguchi design, fault diagnosis and wavelet analysis. Based on the 2015 edition of the Algerian Congress of Mechanics (Congres Algerien de Mecanique, CAM), the book also covers energetics, in terms of simulation of turbulent reactive flow, behaviour of supersonic jet, turbulent combustion, fire induced smoke layer, and heat and mass transfer, as well as important concepts related to human reliability and safety of components and structures. All in all, the book represents a complete, practice-oriented reference guide for both academic and professionals in the field of mechanics.
This book addresses two fundamental issues of motor control for both humans and robots: kinematic redundancy and the posture/movement problem. It blends traditional robotic constrained-optimal approaches with neuroscientific and evidence-based principles, proposing a "Task-space Separation Principle," a novel scheme for planning both posture and movement in redundant manipulators. The proposed framework is first tested in simulation and then compared with experimental motor strategies displayed by humans during redundant pointing tasks. The book also shows how this model builds on and expands traditional formulations such as the Passive Motion Paradigm and the Equilibrium Point Theory. Lastly, breaking with the neuroscientific tradition of planar movements and linear(ized) kinematics, the theoretical formulation and experimental scenarios are set in the nonlinear space of 3D rotations which are essential for wrist motions, a somewhat neglected area despite its importance in daily tasks.
The book provides personal memories along with description of scientific works written by ex-graduate students and research associates of the late Professor Glass. The described research work covers a wide range of shock wave phenomena, resulting from seeds planted by Professor Glass. Professor Glass was born in Poland in 1918. He immigrated together with his parents to Canada at the age of 12 and received all his professional education at the University of Toronto, Canada. He became a world recognized expert in shock wave phenomena, and during his 45 years of active research he supervised more than 125 master and doctoral students, post-doctoral fellows and visiting research associates. In this book seven of his past students/research-associates describe their personal memories of Professor Glass and present some of their investigations in shock wave phenomena which sprung from their past work with Professor Glass. Specifically, these investigations include underwater shock waves, shock/bubble interaction, medical applications of shock wave, various types of shock tubes and shock tube techniques, shock wave attenuation and different types of shock wave reflections.
This book focuses on the justification and refinement of highly diverse approximate dynamic models for engineering structures arising in modern technology, including high-tech domains involving nano- and meta-materials. It proposes a classification for vibration spectra over a broad frequency domain and evaluates the range of validity of various existing 2D theories for thin-walled shells by comparing them with 3D benchmark solutions. The dynamic equations in 3D elasticity are applied to the analysis of harmonic vibrations in hollow bodies with canonical shapes. New exact homogeneous and inhomogeneous solutions are derived for cylinders, spheres and cones (including spherical and conical layers), as well as for plates of variable thickness. The book includes a wealth of numerical examples, as well as refined versions of 2D dynamic formulations. Boundary value problems for hollow bodies are also addressed.
Exploiting the properties of piezoelectric materials to minimize vibration in rotor-blade actuators, this book demonstrates the potential of smart helicopter rotors to achieve the smoothness of ride associated with jet-engined, fixed-wing aircraft. Vibration control is effected using the concepts of trailing-edge flaps and active-twist. The authors' optimization-based approach shows the advantage of multiple trailing-edge flaps and algorithms for full-authority control of dual trailing-edge-flap actuators are presented. Hysteresis nonlinearity in piezoelectric stack actuators is highlighted and compensated by use of another algorithm. The idea of response surfaces provides for optimal placement of trailing-edge flaps. The concept of active twist involves the employment of piezoelectrically induced shear actuation in rotating beams. Shear is then demonstrated for a thin-walled aerofoil-section rotor blade under feedback-control vibration minimization. Active twist is shown to be significant in reducing vibration caused by dynamic stall. The exposition of ideas, materials and algorithms in this monograph is supported by extensive reporting of results from numerical simulations of smart helicopter rotors. This monograph will be a valuable source of reference for researchers and engineers with backgrounds in aerospace, mechanical and electrical engineering interested in smart materials and vibration control. Advances in Industrial Control aims to report and encourage the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
Unifying two decades of research, this book is the first to establish a comprehensive foundation for a systematic analysis and design of linear systems with general state and input constraints. For such systems, which can be used as models for most nonlinear systems, the issues of stability, controller design, additonal constraints, and satisfactory performance are addressed. The book is an excellent reference for practicing engineers, graduate students, and researchers in control systems theory and design. It may also serve as an advanced graduate text for a course or a seminar in nonlinear control systems theory and design in applied mathematics or engineering departments. Minimal prerequisites include a first graduate course in state-space methods as well as a first course in control systems design.
The papers in this volume present an overview of the general aspects and practical applications of dynamic inverse methods, through the interaction of several topics, ranging from classical and advanced inverse problems in vibration, isospectral systems, dynamic methods for structural identification, active vibration control and damage detection, imaging shear stiffness in biological tissues, wave propagation, to computational and experimental aspects relevant for engineering problems.
The paradigm of complexity is pervading both science and engineering, le- ing to the emergence of novel approaches oriented at the development of a systemic view of the phenomena under study; the de?nition of powerful tools for modelling, estimation, and control; and the cross-fertilization of di?erent disciplines and approaches. One of the most promising paradigms to cope with complexity is that of networked systems. Complex, dynamical networks are powerful tools to model, estimate, and control many interesting phenomena, like agent coordination, synch- nization, social and economics events, networks of critical infrastructures, resourcesallocation, informationprocessing, controlovercommunicationn- works, etc. Advances in this ?eld are highlighting approaches that are more and more oftenbasedondynamicalandtime-varyingnetworks, i.e.networksconsisting of dynamical nodes with links that can change over time. Moreover, recent technological advances in wireless communication and decreasing cost and size of electronic devices are promoting the appearance of large inexpensive interconnected systems, each with computational, sensing and mobile ca- bilities. This is fostering the development of many engineering applications, which exploit the availability of these systems of systems to monitor and control very large-scale phenomena with ?ne resoluti
Decentralized Control and Filtering provides a rigorous framework for examining the analysis, stability and control of large-scale systems, addressing the difficulties that arise because dimensionality, information structure constraints, parametric uncertainty and time-delays.This monograph serves three purposes: it reviews past methods and results from a contemporary perspective; it examines presents trends and approaches and to provide future possibilities; and it investigates robust, reliable and/or resilient decentralized design methods based on a framework of linear matrix inequalities. As well as providing an overview of large-scale systems theories from the past several decades, the author presents key modern concepts and efficient computational methods. Representative numerical examples, end-of-chapter problems, and typical system applications are included, and theoretical developments and practical applications of large-scale dynamical systems are discussed in depth.
These proceedings primarily focus on advances in the theory, experiments, and numerical simulations of turbulence in the contexts of flow-induced vibration and noise, as well as their control. Fluid-related structural vibration and noise problems are often encountered in many engineering fields, increasingly making them a cause for concern. The FSSIC conference, held on 5-9 July 2015 in Perth, featured prominent keynote speakers such as John Kim, Nigel Peake, Song Fu and Colin Hansen, as well as talks on a broad range of topics: turbulence, fluid-structure interaction, fluid-related noise and the control/management aspects of these research areas, many of which are clearly interdisciplinary in nature. It provided a forum for academics, scientists and engineers working in all branches of Fluid-Structure-Sound Interactions and Control (FSSIC) to exchange and share the latest developments, ideas and advances, bringing them together researchers from East and West to push forward the frontiers of FSSIC, ensuring that the proceedings will be of interest to a broad engineering community.
This book presents extensive information on structural health monitoring for suspension bridges. During the past two decades, there have been significant advances in the sensing technologies employed in long-span bridge health monitoring. However, interpretation of the massive monitoring data is still lagging behind. This book establishes a series of measurement interpretation frameworks that focus on bridge site environmental conditions, and global and local responses of suspension bridges. Using the proposed frameworks, it subsequently offers new insights into the structural behaviors of long-span suspension bridges. As a valuable resource for researchers, scientists and engineers in the field of bridge structural health monitoring, it provides essential information, methods, and practical algorithms that can facilitate in-service bridge performance assessments.
Compiling the expertise of nine pioneers of the field, Magnetic Bearings - Theory, Design, and Application to Rotating Machinery offers an encyclopedic study of this rapidly emerging field with a balanced blend of commercial and academic perspectives. Every element of the technology is examined in detail, beginning at the component level and proceeding through a thorough exposition of the design and performance of these systems. The book is organized in a logical fashion, starting with an overview of the technology and a survey of the range of applications. A background chapter then explains the central concepts of active magnetic bearings while avoiding a morass of technical details. From here, the reader continues to a meticulous, state-of-the-art exposition of the component technologies and the manner in which they are assembled to form the AMB/rotor system. These system models and performance objectives are then tied together through extensive discussions of control methods for both rigid and flexible rotors, including consideration of the problem of system dynamics identification. Supporting this, the issues of system reliability and fault management are discussed from several useful and complementary perspectives. At the end of the book, numerous special concepts and systems, including micro-scale bearings, self-bearing motors, and self-sensing bearings, are put forth as promising directions for new research and development. Newcomers to the field will find the material highly accessible while veteran practitioners will be impressed by the level of technical detail that emerges from a combination of sophisticated analysis and insights gleaned from many collective years of practical experience. An exhaustive, self-contained text on active magnetic bearing technology, this book should be a core reference for anyone seeking to understand or develop systems using magnetic bearings.
This book reports on solved problems concerning vibrations and stability of complex beam systems. The complexity of a system is considered from two points of view: the complexity originating from the nature of the structure, in the case of two or more elastically connected beams; and the complexity derived from the dynamic behavior of the system, in the case of a damaged single beam, resulting from the harm done to its simple structure. Furthermore, the book describes the analytical derivation of equations of two or more elastically connected beams, using four different theories (Euler, Rayleigh, Timoshenko and Reddy-Bickford). It also reports on a new, improved p-version of the finite element method for geometrically nonlinear vibrations. The new method provides more accurate approximations of solutions, while also allowing us to analyze geometrically nonlinear vibrations. The book describes the appearance of longitudinal vibrations of damaged clamped-clamped beams as a result of discontinuity (damage). It describes the cases of stability in detail, employing all four theories, and provides the readers with practical examples of stochastic stability. Overall, the book succeeds in collecting in one place theoretical analyses, mathematical modeling and validation approaches based on various methods, thus providing the readers with a comprehensive toolkit for performing vibration analysis on complex beam systems. |
You may like...
Star Wars: Episode 7 - The Force Awakens
Daisy Ridley, John Boyega, …
DVD
(10)
Sherlock: The Abominable Bride
Benedict Cumberbatch, Martin Freeman
DVD
(1)
Heat - 2-Disc Director's Definitive…
Al Pacino, Robert De Niro, …
Blu-ray disc
(2)R309 Discovery Miles 3 090
10 Cloverfield Lane
Mary Elizabeth Winstead, John Goodman
Blu-ray disc
(2)R271 Discovery Miles 2 710
Suicide Squad - Extended Cut
Will Smith, Margot Robbie, …
Blu-ray disc
(2)R346 Discovery Miles 3 460
|