![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids > Dynamics & vibration
Model-Based Control will be a collection of state-of-the-art contributions in the field of modelling, identification, robust control and optimization of dynamical systems, with particular attention to the application domains of motion control systems (high-accuracy positioning systems) and large scale industrial process control systems.The book will be directed to academic and industrial people involved in research in systems and control, industrial process control and mechatronics.
This authored monograph presents a study on fundamental limits and robustness of stability and stabilization of time-delay systems, with an emphasis on time-varying delay, robust stabilization, and newly emerged areas such as networked control and multi-agent systems. The authors systematically develop an operator-theoretic approach that departs from both the traditional algebraic approach and the currently pervasive LMI solution methods. This approach is built on the classical small-gain theorem, which enables the author to draw upon powerful tools and techniques from robust control theory. The book contains motivating examples and presents mathematical key facts that are required in the subsequent sections. The target audience primarily comprises researchers and professionals in the field of control theory, but the book may also be beneficial for graduate students alike.
After two succesful conferences held in Innsbruck (Prof. Manfred Husty) in 2006 and Cassino in 2008 (Prof Marco Ceccarelli) with the participation of the most important well-known scientists from the European Mechanism Science Community, a further conference was held in Cluj Napoca, Romania, in 2010 (Prof. Doina Pisla) to discuss new developments in the field. This book presents the most recent research advances in Mechanism Science with different applications. Amongst the topics treated are papers on Theoretical kinematics, Computational kinematics, Mechanism design, Mechanical transmissions, Linkages and manipulators, Mechanisms for biomechanics, Micro-mechanisms, Experimental mechanics, Mechanics of robots, Dynamics of multi-body systems, Dynamics of machinery, Control issues of mechanical systems, Novel designs, History of mechanism science etc.
The increased level of activity on structural health monitoring (SHM) in various universities and research labs has resulted in the development of new methodologies for both identifying the existing damage in structures and predicting the onset of damage that may occur during service. Designers often have to consult a variety of textbooks, journal papers and reports, because many of these methodologies require advanced knowledge of mechanics, dynamics, wave propagation, and material science. Computational Techniques for Structural Health Monitoring gives a one-volume, in-depth introduction to the different computational methodologies available for rapid detection of flaws in structures. Techniques, algorithms and results are presented in a way that allows their direct application. A number of case studies are included to highlight further the practical aspects of the selected topics. Computational Techniques for Structural Health Monitoring also provides the reader with numerical simulation tools that are essential to the development of novel algorithms for the interpretation of experimental measurements, and for the identification of damage and its characterization. Upon reading Computational Techniques for Structural Health Monitoring, graduate students will be able to begin research-level work in the area of structural health monitoring. The level of detail in the description of formulation and implementation also allows engineers to apply the concepts directly in their research.
Compiling the expertise of nine pioneers of the field, Magnetic Bearings - Theory, Design, and Application to Rotating Machinery offers an encyclopedic study of this rapidly emerging field with a balanced blend of commercial and academic perspectives. Every element of the technology is examined in detail, beginning at the component level and proceeding through a thorough exposition of the design and performance of these systems. The book is organized in a logical fashion, starting with an overview of the technology and a survey of the range of applications. A background chapter then explains the central concepts of active magnetic bearings while avoiding a morass of technical details. From here, the reader continues to a meticulous, state-of-the-art exposition of the component technologies and the manner in which they are assembled to form the AMB/rotor system. These system models and performance objectives are then tied together through extensive discussions of control methods for both rigid and flexible rotors, including consideration of the problem of system dynamics identification. Supporting this, the issues of system reliability and fault management are discussed from several useful and complementary perspectives. At the end of the book, numerous special concepts and systems, including micro-scale bearings, self-bearing motors, and self-sensing bearings, are put forth as promising directions for new research and development. Newcomers to the field will find the material highly accessible while veteran practitioners will be impressed by the level of technical detail that emerges from a combination of sophisticated analysis and insights gleaned from many collective years of practical experience. An exhaustive, self-contained text on active magnetic bearing technology, this book should be a core reference for anyone seeking to understand or develop systems using magnetic bearings.
Hereditary systems (or systems with either delay or after-effects)
are widely used to model processes in physics, mechanics, control,
economics and biology. An important element in their study is their
stability. Stability conditions for difference equations with delay
can be obtained using a Lyapunov functional.
This book reports on solved problems concerning vibrations and stability of complex beam systems. The complexity of a system is considered from two points of view: the complexity originating from the nature of the structure, in the case of two or more elastically connected beams; and the complexity derived from the dynamic behavior of the system, in the case of a damaged single beam, resulting from the harm done to its simple structure. Furthermore, the book describes the analytical derivation of equations of two or more elastically connected beams, using four different theories (Euler, Rayleigh, Timoshenko and Reddy-Bickford). It also reports on a new, improved p-version of the finite element method for geometrically nonlinear vibrations. The new method provides more accurate approximations of solutions, while also allowing us to analyze geometrically nonlinear vibrations. The book describes the appearance of longitudinal vibrations of damaged clamped-clamped beams as a result of discontinuity (damage). It describes the cases of stability in detail, employing all four theories, and provides the readers with practical examples of stochastic stability. Overall, the book succeeds in collecting in one place theoretical analyses, mathematical modeling and validation approaches based on various methods, thus providing the readers with a comprehensive toolkit for performing vibration analysis on complex beam systems.
This book develops a uniform accurate method which is capable of dealing with vibrations of laminated beams, plates and shells with arbitrary boundary conditions including classical boundaries, elastic supports and their combinations. It also provides numerous solutions for various configurations including various boundary conditions, laminated schemes, geometry and material parameters, which fill certain gaps in this area of reach and may serve as benchmark solutions for the readers. For each case, corresponding fundamental equations in the framework of classical and shear deformation theory are developed. Following the fundamental equations, numerous free vibration results are presented for various configurations including different boundary conditions, laminated sequences and geometry and material properties. The proposed method and corresponding formulations can be readily extended to static analysis.
With rapid economic and industrial development in China, India and elsewhere, fluid-related structural vibration and noise problems are widely encountered in many fields, just as they are in the more developed parts of the world, causing increasingly grievous concerns. Turbulence clearly has a significant impact on many such problems. On the other hand, new opportunities are emerging with the advent of various new technologies, such as signal processing, flow visualization and diagnostics, new functional materials, sensors and actuators, etc. These have revitalized interdisciplinary research activities, and it is in this context that the 2nd symposium on fluid-structure-sound interactions and control (FSSIC) was organized. Held in Hong Kong (May 20-21, 2013) and Macau (May 22-23, 2013), the meeting brought together scientists and engineers working in all related branches from both East and West and provided them with a forum to exchange and share the latest progress, ideas and advances and to chart the frontiers of FSSIC. "The Proceedings of the 2nd Symposium on Fluid-Structure-Sound Interactions and Control" largely focuses on advances in the theory, experimental research and numerical simulations of turbulence in the contexts of flow-induced vibration, noise and their control. This includes several practical areas for interaction, such as the aerodynamics of road and space vehicles, marine and civil engineering, nuclear reactors and biomedical science etc. One of the particular features of these proceedings is that it integrates acoustics with the study of flow-induced vibration, which is not a common practice but is scientifically very helpful in understanding, simulating and controlling vibration. This offers a broader view of the discipline from which readers will benefit greatly. These proceedings are intended for academics, research scientists, design engineers and graduate students in engineering fluid dynamics, acoustics, fluid and aerodynamics, vibration, dynamical systems and control etc. Yu Zhou is a professor in Institute for Turbulence-Noise-Vibration Interaction and Control at Harbin Institute of Technology. Yang Liu is an associate professor at The Hong Kong Polytechnic University. Lixi Huang, associate professor, works at the University of Hong Kong. Professor Dewey H. Hodges works at the School of Aerospace Engineering, Georgia Institute of Technology.
This book presents a novel, generalized approach to the design of nonlinear state feedback control laws for a large class of underactuated mechanical systems based on application of the block backstepping method. The control law proposed here is robust against the effects of model uncertainty in dynamic and steady-state performance and addresses the issue of asymptotic stabilization for the class of underactuated mechanical systems. An underactuated system is defined as one for which the dimension of space spanned by the configuration vector is greater than that of the space spanned by the control variables. Control problems concerning underactuated systems currently represent an active field of research due to their broad range of applications in robotics, aerospace, and marine contexts. The book derives a generalized theory of block backstepping control design for underactuated mechanical systems, and examines several case studies that cover interesting examples of underactuated mechanical systems. The mathematical derivations are described using well-known notations and simple algebra, without the need for any special previous background in higher mathematics. The chapters are lucidly described in a systematic manner, starting with control system preliminaries and moving on to a generalized description of the block backstepping method, before turning to several case studies. Simulation and experimental results are also provided to aid in reader comprehension.
The control of vibrating systems is a significant issue in the design of aircraft, spacecraft, bridges, and high-rise buildings. This book discusses the control of vibrating systems, integrating structural dynamics, vibration analysis, modern control, and system identification. By integrating these subjects engineers will need only one book, rather than several texts or courses, to solve vibration control problems. The authors cover key developments in aerospace control and identification theory, including virtual passive control, observer and state-space identification, and data-based controller synthesis. They address many practical issues and applications, and show examples of how various methods are applied to real systems. Some methods show the close integration of system identification and control theory from the state-space perspective, rather than from the traditional input-output model perspective of adaptive control. This text will be useful for advanced undergraduate and beginning graduate students in aerospace, mechanical, and civil engineering, as well as for practicing engineers.
Modern technical advancements in areas such as robotics, multi-body systems, spacecraft, control, and design of complex mechanical devices and mechanisms in industry require the knowledge to solve advanced concepts in dynamics. "Mechanisms and Robots Analysis with MATLAB" provides a thorough, rigorous presentation of kinematics and dynamics. The book uses MATLAB as a tool to solve problems from the field of mechanisms and robots. The book discusses the tools for formulating the mathematical equations, and also the methods of solving them using a modern computing tool like MATLAB. An emphasis is placed on basic concepts, derivations, and interpretations of the general principles. The book is of great benefit to senior undergraduate and graduate students interested in the classical principles of mechanisms and robotics systems. Each chapter introduction is followed by a careful step-by-step presentation, and sample problems are provided at the end of every chapter.
Vibration problems dealing with advanced Mathematical and Numerical Techniques have extensive application in a wide class of problems in ae- nautics, aerodynamics, space science and technology, off-shore engineering and in the design of different structural components of high speed space crafts and nuclear reactors. Different classes of vibration problems dealing with complex geometries and non-linear behaviour require careful attention of scientists and engineers in pursuit of their research activities. Almost all fields of Engineering, Science and Technology, ranging from small domestic building subjected to earthquake and cyclone to the space craft venturing towards different planets, from giant ship to human skeleton, encounter problems of vibration and dynamic loading. This being truly an interdisciplinary field, where the mathematicians, phy- cists and engineers could interface their innovative ideas and creative thoughts to arrive at an appropriate solution, Bengal Engineering and Science University, Shibpur, India, a premier institution for education and research in engineering, science and technology felt it appropriate to organize 8th International C- ference on "Vibration Problems (ICOVP-2007)" as a part of its sesquicentenary celebration. The conference created a platform and all aspects of vibration phenomenon with the focus on the state-of-the art in theoretical, experimental and applied research areas were addressed and the scientific interaction, p- ticipated by a large gathering including eminent personalities and young research workers, generated many research areas and innovative ideas.
"Advanced Dynamics: Analytical and Numerical Calculations with MATLAB" provides a thorough, rigorous presentation of kinematics and dynamics while using MATLAB as an integrated tool to solve problems. Topics presented are explained thoroughly and directly, allowing fundamental principles to emerge through applications from areas such as multibody systems, robotics, spacecraft and design of complex mechanical devices. This book differs from others in that it uses symbolic MATLAB for both theory and applications. Special attention is given to solutions that are solved analytically and numerically using MATLAB. The illustrations and figures generated with MATLAB reinforce visual learning while an abundance of examples offer additional support.
A complete solution for problems of vibration control in structures that may be subject to a broadband primary vibration field, this book addresses the following steps: experimental identification of the dynamic model of the structure; optimal placement of sensors and actuators; formulation of control constraints in terms of controller frequency response shape; controller design and simulation; and controller implementation and rapid prototyping. The identification procedure is a gray-box approach tailored to the estimation of modal parameters of large-scale flexible structures. The actuator/sensor placement algorithm maximizes a modal controllability index improving the effectiveness of the control. Considering limitations of sensors and actuators, the controller is chosen as a stable, band-pass MIMO system resulting from the closed-form solution of a robust control problem. Experimental results on an aeronautical stiffened skin panel are presented using rapid-prototyping hardware.
This book presents the proceedings of the Symposium on Fluid-Structure-Sound Interactions and Control (FSSIC), (held in Tokyo on Aug. 21-24, 2017), which largely focused on advances in the theory, experiments on, and numerical simulation of turbulence in the contexts of flow-induced vibration, noise and their control. This includes several practical areas of application, such as the aerodynamics of road and space vehicles, marine and civil engineering, nuclear reactors and biomedical science, etc. Uniquely, these proceedings integrate acoustics with the study of flow-induced vibration, which is not a common practice but can be extremely beneficial to understanding, simulating and controlling vibration. The symposium provides a vital forum where academics, scientists and engineers working in all related branches can exchange and share their latest findings, ideas and innovations - bringing together researchers from both east and west to chart the frontiers of FSSIC.
This book provides recent advances in analysis and synthesis of Large-scale network systems (LSNSs) with sampled-data communication and non-identical nodes. In its first chapter of the book presents an introduction to Synchronization of LSNSs and Algebraic Graph Theory as well as an overview of recent developments of LSNSs with sampled data control or output regulation control. The main text of the book is organized into two main parts - Part I: LSNSs with sampled-data communication and Part II: LSNSs with non-identical nodes. This monograph provides up-to-date advances and some recent developments in the analysis and synthesis issues for LSNSs with sampled-data communication and non-identical nodes. It describes the constructions of the adaptive reference generators in the first stage and the robust regulators in the second stage. Examples are presented to show the effectiveness of the proposed design techniques.
This book provides students and researchers with a systematic solution for fluid-induced structural vibrations, galloping instability and the chaos of cables. They will also gain a better understanding of stable and unstable periodic motions and chaos in fluid-induced structural vibrations. Further, the results presented here will help engineers effectively design and analyze fluid-induced vibrations.
This book focuses on the theory and design of special space orbits. Offering a systematic and detailed introduction to the hovering orbit, spiral cruising orbit, multi-target rendezvous orbit, initiative approaching orbit, responsive orbit and earth pole-sitter orbit, it also discusses the concept, theory, design methods and application of special space orbits, particularly the design and control method based on kinematics and astrodynamics. In addition the book presents the latest research and its application in space missions. It is intended for researchers, engineers and postgraduates, especially those working in the fields of orbit design and control, as well as space-mission planning and research.
The papers in this volume provide a vision of the evolution of the robotics disciplines and indicate new directions in which these disciplines are foreseen to develop. Paper topics include, but are not limited to, novel robot design and robot modules/components, service, education, medical, space, welfare and rescue robots, humanoid robots, bio-robotics, multi-robot, embodied multi-agent systems, challenges in control, modeling, kinematical and dynamical analysis of robotic systems, innovations in sensor systems for robots and perception, and recent advances in robotics. In particular, many contributions on humanoid robots from leading Japanese researchers are included.
This volume covers the interdisciplinary field of disaster mitigatition against earthquakes with special emphasis on prevention of total collapse of existing low rise buildings towards reduction of life losses and economical assets. Rehabilitation of thousands of low-rise buildings in many big cities located in earthquake prone areas, is practically impossible even though there are experimentally and analytically approved intervention techniques to protect these existing buildings. It is simply not possible to find a proper way and proper amount of financial support to do this job. It will be more realistic to change the target to be achieved in a relatively short time, especially if time shortage starts to become the most critical issue. The new target can be specified as the prevention of total collapse of low-rise low-cost existing buildings, at least to save as much lives and property as possible. Simple prescriptive techniques, which can be implemented by the building owners, should be prepared. The cost of the improvement techniques, all kinds of legal, economical and social issues for convincing people, and promotions such as tax exemptions should be discussed in detail. Writers of all chapters are leading researchers and engineers working in the field of structural and earthquake engineering. The book will start with an introduction chapter written by Prof. Helmut Krawinkler of Stanford University. In this chapter, past and present of studies towards seismically safe design and construction will be introduced, as well as potential future trends in structural and earthquake engineering. In other chapters, different subjects will be presented under three main titles, namely; determination of seismic risks, seismic safety assessment of existing buildings, and measures for prevention of total collapse.
This edited volume presents selected contributions from the International Conference on Experimental Vibration Analysis of Civil Engineering Structures held in San Diego, California in 2017 (EVACES2017). The event brought together engineers, scientists, researchers, and practitioners, providing a forum for discussing and disseminating the latest developments and achievements in all major aspects of dynamic testing for civil engineering structures, including instrumentation, sources of excitation, data analysis, system identification, monitoring and condition assessment, in-situ and laboratory experiments, codes and standards, and vibration mitigation.
This book focuses on the analysis and design of advanced techniques for on-line automatic computational monitoring of pipelines and pipe networks. It discusses how to improve the systems' security considering mathematical models of the flow, historical flow rate and pressure data, with the main goal of reducing the number of sensors installed along a pipeline. The techniques presented in the book have been implemented in digital systems to enhance the abilities of the pipeline network's operators in recognizing anomalies. A real leak scenario in a Mexican water pipeline is used to illustrate the benefits of these techniques in locating the position of a leak. Intended for an interdisciplinary audience, the book addresses researchers and professionals in the areas of mechanical, civil and control engineering. It covers topics on fluid mechanics, instrumentation, automatic control, signal processing, computing, construction and diagnostic technologies.
Mechanics and Control of Soft-fingered Manipulation introduces a new approach to the modeling of fingertips that have a soft pad and a hard back plate, similar to human fingers. Starting from the observation of soft-fingered grasping and manipulation, the book provides a parallel distributed model that takes into account tangential deformation of the fingertips. The model is supported with many experimental verifications and simulation results. Statics and dynamics in soft-fingered grasping and manipulation are also formulated based on this new model. The book uniquely investigates how soft fingertips with hard back plates enhance dexterity in grasping and manipulation, theoretically and experimentally, revealing the differences between soft-fingered and rigid-fingered manipulation. Researchers involved in object manipulation by robotic hands, as well as in human dexterity in object manipulation, will find this text enlightening.
This volume contains the Proceedings of MUSME 2014, held at Huatulco in Oaxaca, Mexico, October 2014. Topics include analysis and synthesis of mechanisms; dynamics of multibody systems; design algorithms for mechatronic systems; simulation procedures and results; prototypes and their performance; robots and micromachines; experimental validations; theory of mechatronic simulation; mechatronic systems; and control of mechatronic systems. The MUSME symposium on Multibody Systems and Mechatronics was held under the auspices of IFToMM, the International Federation for Promotion of Mechanism and Machine Science, and FeIbIM, the Iberoamerican Federation of Mechanical Engineering. Since the first symposium in 2002, MUSME events have been characterised by the way they stimulate the integration between the various mechatronics and multibody systems dynamics disciplines, present a forum for facilitating contacts among researchers and students mainly in South American countries, and serve as a joint conference for the IFToMM and FeIbIM communities. |
You may like...
Design for the Unexpected - From Holonic…
Paul Valckenaers, Hendrik Van Brussel
Paperback
R2,812
Discovery Miles 28 120
Geodetic Sciences - Theory, Applications…
Bihter Erol, Serdar Erol
Hardcover
R3,077
Discovery Miles 30 770
Dynamics - Theory and Application of…
Carlos M Roithmayr, Dewey H. Hodges
Hardcover
R1,701
Discovery Miles 17 010
Qualitative Analysis of Nonsmooth…
Alain Leger, Elaine Pratt
Hardcover
R2,320
Discovery Miles 23 200
Reference for Modern Instrumentation…
R.N. Thurston, Allan D. Pierce
Hardcover
R3,460
Discovery Miles 34 600
|