![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering
Short, comprehensive overview concentrating on major breakthroughs, disruptive ideas, and unexpected results Accessible to all interested in subatomic physics with little prior knowledge required Contains the latest developments in this exciting field
This book covers some selected problems of the descriptor integer and fractional order positive continuous-time and discrete-time systems. The book consists of 3 chapters, 4 appendices and the list of references. Chapter 1 is devoted to descriptor integer order continuous-time and discrete-time linear systems. In Chapter 2, descriptor fractional order continuous-time and discrete-time linear systems are considered. Chapter 3 is devoted to the stability of descriptor continuous-time and discrete-time systems of integer and fractional orders. In Appendix A, extensions of the Cayley-Hamilton theorem for descriptor linear systems are given. Some methods for computation of the Drazin inverse are presented in Appendix B. In Appendix C, some basic definitions and theorems on Laplace transforms and Z-transforms are given. Some properties of the nilpotent matrices are given in Appendix D.
This book presents selected papers from the 1st International Conference on Industry 4.0 and Advanced Manufacturing held at the Indian Institute of Science, Bangalore and includes deliberations from stakeholders in manufacturing and Industry 4.0 on the nature, needs, challenges, opportunities, problems, and solutions in these transformational areas. Special emphasis is placed on exploring avenues for creating a vision of, and enablers for, sustainable, affordable, and human-centric Industry 4.0. The book showcases cutting edge practice, research, and educational innovation in this crucial and rapidly evolving area. This book will be useful to researchers in academia and industry, and will also be useful to policymakers involved in creating ecosystems for implementation of Industry 4.0.
In the50years since the first volume of "Progress in Optics" was
published, optics has become one of the most dynamic fields of
science. The volumes in this series that have appeared up to now
contain more than 300 review articles by distinguished research
workers, which have become permanent records for many important
developments, helping optical scientists and optical engineers stay
abreast of their fields.
This monograph introduces breakthrough control algorithms for partial differential equation models with moving boundaries, the study of which is known as the Stefan problem. The algorithms can be used to improve the performance of various processes with phase changes, such as additive manufacturing. Using the authors' innovative design solutions, readers will also be equipped to apply estimation algorithms for real-world phase change dynamics, from polar ice to lithium-ion batteries. A historical treatment of the Stefan problem opens the book, situating readers in the larger context of the area. Following this, the chapters are organized into two parts. The first presents the design method and analysis of the boundary control and estimation algorithms. Part two then explores a number of applications, such as 3D printing via screw extrusion and laser sintering, and also discusses the experimental verifications conducted. A number of open problems and provided as well, offering readers multiple paths to explore in future research. Materials Phase Change PDE Control & Estimation is ideal for researchers and graduate students working on control and dynamical systems, and particularly those studying partial differential equations and moving boundaries. It will also appeal to industrial engineers and graduate students in engineering who are interested in this area.
This book gives an overview of modern cathodes and electron emitters for vacuum tubes and vacuum electron devices in general. It covers the latest developments in field emission theory as well as new methods towards improving thermionic and cold cathodes. It addresses thermionic cathodes, such as oxide cathodes, impregnated and scandate cathodes, as well as photocathodes and field emitters - the latter comprising carbon nanotubes, graphene and Spindt-type emitter arrays. Despite the rise and fall of the once dominant types of vacuum tubes, such as radio valves and cathode ray tubes, cathodes are continually being improved upon as new applications with increased demands arise, for example in electron beam lithography, high-power and high-frequency microwave tubes, terahertz imaging and electron sources for accelerators. Written by 17 experts in the field, the book presents the latest developments in cathodes needed for these applications, discussing the state of the art and addressing future trends.
This book provides an efficient introduction to fundamental and advanced digital transmission technologies in current and future wireless communication systems. The objective is to help students and engineers quickly grasp the operating principles and design trade-offs of various wireless transmission technologies, which will enable them to carry out product development or perform academic research in the field. With sufficient theoretical depth, the book covers large-scale channel effects; multipath fading; digital transmission over flat fading; fading mitigation through diversity combining; transmission over frequency selective fading; spread spectrum transmission; channel capacity and coding; channel adaptive transmission; MIMO transmission; and advanced topics including multiuser diversity transmission, cooperative relay transmission and multiuser MIMO transmission. The material is presented without assuming an extensive digital communications background from the readers. The design principles of these technologies are manifested with over 100 carefully designed illustration and over 60 problem-solving examples. The readers can also check their own understanding with extra practice problems at the end of each chapter. Special emphasis is placed on the important trade-off analysis of performance versus complexity.
This book examines key issues in improving the efficiency of small and medium power boiler units by adding control systems for the fuel combustion process. The original models, algorithms, software and hardware of the system developed for controlling the fuel combustion process are presented. In turn, the book presents a methodology for assessing the influence of climatic factors on the combustion process, and proposes new methods for measuring the thermophysical characteristics, which require taking into account the concentration of oxygen in the air. The system developed here was implemented on a boiler of the NIISTU-5 type, which is widely used for heat power engineering in Ukraine and other Eastern European countries. Given its scope, the book offers a valuable asset for researchers and engineers, as well as lecturers and graduate students at higher education institutions dealing with heat engineering equipment.
This book presents Dual Mode Logic (DML), a new design paradigm for digital integrated circuits. DML logic gates can operate in two modes, each optimized for a different metric. Its on-the-fly switching between these operational modes at the gate, block and system levels provide maximal E-D optimization flexibility. Each highly detailed chapter has multiple illustrations showing how the DML paradigm seamlessly implements digital circuits that dissipate less energy while simultaneously improving performance and reducing area without a significant compromise in reliability. All the facets of the DML methodology are covered, starting from basic concepts, through single gate optimization, general module optimization, design trade-offs and new ways DML can be integrated into standard design flows using standard EDA tools. DML logic is compatible with numerous applications but is particularly advantageous for ultra-low power, reliable high performance systems, and advanced scaled technologies Written in language accessible to students and design engineers, each topic is oriented toward immediate application by all those interested in an alternative to CMOS logic. Describes a novel, promising alternative to conventional CMOS logic, known as Dual Mode Logic (DML), with which a single gate can be operated selectively in two modes, each optimized for a different metric (e.g., energy consumption, performance, size); Demonstrates several techniques at the architectural level, which can result in high energy savings and improved system performance; Focuses on the tradeoffs between power, area and speed including optimizations at the transistor and gate level, including alternatives to DML basic cells; Illustrates DML efficiency for a variety of VLSI applications.
Wireless localization techniques are an area that has attracted interest from both industry and academia, with self-localization capability providing a highly desirable characteristic of wireless sensor networks. Localization Algorithms and Strategies for Wireless Sensor Networks encompasses the significant and fast growing area of wireless localization techniques. This book provides comprehensive and up-to-date coverage of topics and fundamental theories underpinning measurement techniques and localization algorithms. A useful compilation for academicians, researchers, and practitioners, this Premier Reference Source contains relevant references and the latest studies emerging out of the wireless sensor network field.
Computational electromagnetics is an active research area concerned with the development and implementation of numerical methods and techniques for rigorous solutions to physical problems across the entire spectrum of electromagnetic waves - from radio frequencies to gamma rays. Numerical methods and techniques developed and implemented in this area are now used every day to solve complex problems in diverse application areas, including but not limited to antennas, telecommunications, biomedical imaging, sensing, energy harvesting, nanotechnology, and optics. The purpose of this book is to provide a broad overview of the recent efforts in computational electromagnetics to develop and implement more robust, stable, accurate, and efficient algorithms. After an extensive overview of the main trends in computational electromagnetics, individual chapters written by international experts explore the state-of-the-art in frequency-domain surface integration; frequency-domain volume integral equations; time-domain integral equations; time-domain methods for plasmonic media; finite element methods; geometric modelling and discretization for integral equations; hierarchical vector basis functions; analysis of electromagnetic fields in multilayered media; acceleration and parallelization techniques; periodic problems and determining related eigenvalues; algebraic preconditioning; high-frequency techniques and hybridizations; and uncertainty quantification for large-scale electromagnetic analysis.
This book contains stories of women engineers' paths through the golden age of microelectronics, stemming from the invention of the transistor in 1947. These stories, like the biographies of Marie Curie and the National Geographic's stories of Jane Goodall's research that inspired the authors will inspire and guide readers along unconventional pathways to contributions to microelectronics that we can only begin to imagine. The book explores why and how the women writing here chose their career paths and how they navigated their careers. This topic is of interest to a vast audience, from students to professionals to university advisers to industry CEOs, who can imagine the advantages of a future with a diverse work force. Provides insight into women's early contributions to the field of microelectronics and celebrates the challenges they overcame; Presents compelling innovations from academia, research, and industry into advances, applications, and the future of microelectronics; Includes a fascinating look into topics such as nanotechnologies, video games, analog electronics, design automation, and neuromorphic circuits.
This book provides an overview of radar waveform synthesis obtained as the result of computational optimization processes and covers the most challenging application fields. The book balances a practical point of view with a rigorous mathematical approach corroborated with a wealth of numerical study cases and some real experiments. Additionally, the book has a cross-disciplinary approach because it exploits cross-fertilization with the recent research and discoveries in optimization theory. The material of the book is organized into ten chapters, each one completed with a comprehensive list of references. The following topics are covered: recent advances of binary sequence designs and their applications; quadratic optimization for unimodular sequence synthesis and applications; a computational design of phase-only (possibly binary) sequences for radar systems; constrained radar code design for spectrally congested environments via quadratic optimization; robust transmit code and receive filter design for extended targets detection in clutter; optimizing radar transceiver for Doppler processing via non-convex programming; radar waveform design via the majorization-minimization framework; Lagrange programming neural network for radar waveform design; cognitive local ambiguity function shaping with spectral coexistence and experiments; and relative entropy based waveform design for MIMO radar. Targeted at an audience of radar engineers and researchers, this book provides thorough and up-to-date coverage of optimisation theory for radar waveform design.
This book intends to introduce some recent results on passivity of complex dynamical networks with single weight and multiple weights. The book collects novel research ideas and some definitions in complex dynamical networks, such as passivity, output strict passivity, input strict passivity, finite-time passivity, and multiple weights. Furthermore, the research results previously published in many flagship journals are methodically edited and presented in a unified form. The book is likely to be of interest to university researchers and graduate students in Engineering and Mathematics who wish to study the passivity of complex dynamical networks.
Technology is ever-changing in the field of aircraft avionics and new systems may require a different approach to testing. The Federal Aviation Administration (FAA) revises its regulatory material as a result of system updates and therefore requirements for airworthiness testing also need to be updated. Test and Evaluation of Aircraft Avionics and Weapon Systems, 2nd Edition is a unique training book which serves as both a text and practical reference for all personnel involved in avionics and weapons system evaluation and testing, in the air and on the ground. Whether training pilots and personnel or planning to test systems, this book provides readers with the fundamentals and practical information needed to get the job done. This new edition has been updated and expanded to offer additional chapter exercises plus three new chapters; UAV technology has exploded on the scene, therefore creating a high demand for a guide to UAV testing, Operational Test and Evaluation is a specialised form of testing accomplished by the end-user before final acceptance of the product, Night Vision Systems and Helmet Mounted Displays are also newer technologies advanced in the revised edition.
This book provides readers with a 360-degree perspective on the Internet of Things (IoT) design and M2M communication process. It is intended to be used as a design guide for the development of IoT solutions, covering architecture, design, and development methods. This book examines applications such as industry automation for Industry 4.0, Internet of Medical Things (IoMT), and Internet of Services (IoS) as it is unfolding. Discussions on engineering fundamentals are limited to what is required for the realization of IoT solutions. Internet of Things and M2M Communication Technologies: Architecture and Practical Design Approach to IoT in Industry 4.0 is written by an industry veteran with more than 30 years of hands-on experience. It is an invaluable guide for electrical, electronic, computer science, and information science engineers who aspire to be IoT designers and an authoritative reference for practicing designers working on IoT device development. Provides complete design approach to develop IoT solutions; Includes reference designs and guidance on relevant standards compliance; Addresses design for manufacturability and business models.
This book covers selected topics of automated logic synthesis dedicated to FPGAs. The authors focused on two main problems: decomposition of the multioutput functions and technology mapping. Additionally, the idea of using binary decision diagrams (BDD) in these processes was presented. The book is a scientific monograph summarizing the authors' many years of research. As a result, it contains a large number of experimental results, which makes it a valuable source for other researchers. The book has a significant didactic value. Its arrangement allows for a gradual transition from basic things (e.g., description of logic functions) to much more complex issues. This approach allows less advanced readers to better understand the described problems. In addition, the authors made sure that the issues described in the book were supported by practical examples, thanks to which the reader can independently analyze even the most complex problems described in the book.
This book concentrates on a wide range of advances related to IT cybersecurity management. The topics covered in this book include, among others, management techniques in security, IT risk management, the impact of technologies and techniques on security management, regulatory techniques and issues, surveillance technologies, security policies, security for protocol management, location management, GOS management, resource management, channel management, and mobility management. The authors also discuss digital contents copyright protection, system security management, network security management, security management in network equipment, storage area networks (SAN) management, information security management, government security policy, web penetration testing, security operations, and vulnerabilities management. The authors introduce the concepts, techniques, methods, approaches and trends needed by cybersecurity management specialists and educators for keeping current their cybersecurity management knowledge. Further, they provide a glimpse of future directions where cybersecurity management techniques, policies, applications, and theories are headed. The book is a rich collection of carefully selected and reviewed manuscripts written by diverse cybersecurity management experts in the listed fields and edited by prominent cybersecurity management researchers and specialists.
The first book on optical OFDM by the leading pioneers in the fieldThe only book to cover error correction codes for optical OFDMGives applications of OFDM to free-space communications, optical access networks, and metro and log haul transports show optical OFDM can be implementedContains introductions to signal processing for optical engineers and optical communication fundamentals for wireless engineers This book gives a coherent and comprehensive introduction to the fundamentals of OFDM signal processing, with a distinctive focus on its broad range of applications. It evaluates the architecture, design and performance of a number of OFDM variations, discusses coded OFDM, and gives a detailed study of error correction codes for access networks, 100 Gb/s Ethernet and future optical networks. The emerging applications of optical OFDM, including single-mode fiber transmission, multimode fiber transmission, free space optical systems, and optical access networks are examined, with particular attention paid to passive optical networks, radio-over-fiber, WiMAX and UWB communications. Written by two of the leading contributors to the field, this book will be a unique reference for optical communications engineers and scientists. Students, technical managers and telecom executives seeking to understand this new technology for future-generation optical networks will find the book invaluable. William Shieh is an associate professor and reader in the electrical and electronic engineering department, The University of Melbourne, Australia. He received his M.S. degree in electrical engineering and Ph.D. degree in physics both from University of Southern California. Ivan Djordjevic is an Assistant Professor of Electrical and Computer Engineering at the University of Arizona, Tucson, where he directs the Optical Communications Systems Laboratory (OCSL). His current research interests include optical networks, error control coding, constrained coding, coded modulation, turbo equalization, OFDM applications, and quantum error correction. "This wonderful book is the first one to address the rapidly
emerging optical OFDM field. Written by two leading researchers in
the field, the book is structured to comprehensively cover any
optical OFDM aspect one could possibly think of, from the most
fundamental to the most specialized. The book adopts a coherent
line of presentation, while striking a thoughtful balance between
the various topics, gradually developing the optical-physics and
communication-theoretic concepts required for deep comprehension of
the topic, eventually treating the multiple optical OFDM methods,
variations and applications. In my view this book will remain
relevant for many years to come, and will be increasingly accessed
by graduate students, accomplished researchers as well as
telecommunication engineers and managers keen to attain a
perspective on the emerging role of OFDM in the evolution of
photonic networks." -- "Prof.Moshe Nazarathy, EE Dept., Technion,
Israel Institute of Technology"
This book presents time synchronization and its essential role as a conduit of optimized networks and as one of the key imperatives of ubiquitous connectivity. The author discusses how, without proper time synchronization, many mission critical infrastructures such as 5G mobile networks, smart grids, data centres CATV, and industrial networks would render in serious performance issues and may be subject to catastrophic failure. The book provides a thorough understanding of time synchronization from fundamental concepts to the application of time synchronization in NextGen mission critical infrastructure. Readers will find information not only on designing the optimized products for mission critical infrastructure but also on building NextGen mission critical infrastructure. |
![]() ![]() You may like...
Design for the Unexpected - From Holonic…
Paul Valckenaers, Hendrik Van Brussel
Paperback
R2,986
Discovery Miles 29 860
Diagnosis, Fault Detection & Tolerant…
Nabil Derbel, Jawhar Ghommam, …
Hardcover
R4,392
Discovery Miles 43 920
Guidance, Navigation, and Control for…
Yongchun Xie, Changqing Chen, …
Hardcover
R5,298
Discovery Miles 52 980
Finite and Instantaneous Screw Theory in…
Tao Sun, Shuofei Yang, …
Hardcover
R2,939
Discovery Miles 29 390
Active Control of Vibration
Christopher C. Fuller, S.J. Elliott, …
Paperback
Inerter and Its Application in Vibration…
Michael Z. Q. Chen, Yinlong Hu
Hardcover
R4,348
Discovery Miles 43 480
Fault-tolerant Control and Diagnosis for…
Rafael Martinez-Guerra, Fidel Melendez-Vazquez, …
Hardcover
R2,881
Discovery Miles 28 810
|