![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering
The updated edition of this book provides comprehensive coverage of fundamental semiconductor physics. This subject is essential to an understanding of the physical and operational principles of a wide variety of semiconductor electronic and optoelectronic devices. It has been revised to reflect advances in semiconductor technologies over the past decade, including many new semiconductor devices that have emerged and entered into the marketplace.
This book deals with the analysis and development of numerical methods for the time-domain analysis of multiphysical effects in superconducting circuits of particle accelerator magnets. An important challenge is the simulation of "quenching", i.e. the transition of a material from the superconducting to the normally electrically conductive state. The book analyses complex mathematical structures and presents models to simulate such quenching events in the context of generalized circuit elements. Furthermore, it proposes efficient parallelized algorithms with guaranteed convergence properties for the simulation of multiphysical problems. Spanning from theoretical concepts to applied research, and featuring rigorous mathematical presentations on one side, as well as simplified explanations of many complex issues, on the other side, this book provides graduate students and researchers with a comprehensive introduction on the state of the art and a source of inspiration for future research. Moreover, the proposed concepts and methods can be extended to the simulation of multiphysical phenomena in different application contexts.
This book systematically presents the concept, history, implementation, theory system and basic methods of pulsar and space flight, illustrating the characteristics of pulsars. It also describes the classification of spacecraft navigation systems and the autonomous navigation technologies, as well as X-ray pulsar-based navigation systems (XPNAV) and discusses future navigation satellite systems in detail.
This book presents the proceedings of the 46th National Symposium on Acoustics (NSA 2017). The main goal of this symposium is to discuss key opportunities and challenges in acoustics, especially as applied to engineering problems. The book covers topics ranging from hydro-acoustics, environmental acoustics, bio-acoustics to musical acoustics, electro-acoustics and sound perception. The contents of this volume will prove useful to researchers and practicing engineers working on acoustics problems.
This book focuses on the design, development, and characterization of a compact magnetic laser scanner for microsurgical applications. In addition, it proposes a laser incision depth controller to be used in soft tissue microsurgeries. The use of laser scanners in soft tissue microsurgery results in high quality ablations with minimal thermal damage to surrounding tissue. However, current scanner technologies for microsurgery are limited to free-beam lasers, which require direct line-of-sight to the surgical site, from outside the patient. Developing compact laser micromanipulation systems is crucial to introducing laser-scanning capabilities in hard-to-reach surgical sites, e.g., vocal cords. In this book, the design and fabrication of a magnetically actuated endoscopic laser scanner have been shown, one that introduces high-speed laser scanning for high quality, non-contact tissue ablations in narrow workspaces. Static and dynamic characterization of the system, its teleoperation through a tablet device, and its control modelling for automated trajectory executions have been shown using a fabricated and assembled prototype. Following this, the book discusses how the laser position and velocity control capabilities of the scanner can be used to design a laser incision depth controller to assist surgeons during operations.
Without sensors most electronic applications would not
exist-sensors perform a vital function, namely providing an
interface to the real world. Hall effect sensors, based on a
magnetic phenomena, are one of the most commonly used sensing
technologies today. In the 1970s it became possible to build Hall
effect sensors on integrated circuits with onboard signal
processing circuitry, vastly reducing the cost and enabling
widespread practical use. One of the first major applications was
in computer keyboards, replacing mechanical contacts. Hundreds of
millions of these devices are now manufactured each year for use in
a great variety of applications, including automobiles, computers,
industrial control systems, cell phones, and many others.
This thoroughly updated second edition of an Artech House bestseller brings together a team of leading experts who provide a current and comprehensive treatment of the Global Positioning System (GPS). The book covers all the latest advances in technology, applications, and systems. The second edition includes new chapters that explore the integration of GPS with vehicles and cellular telephones, new classes of satellite broadcast signals, the emerging GALILEO system, and new developments in the GPS marketplace. This single-source reference provides a quick overview of GPS essentials, an in-depth examination of advanced technical topics, and a review of emerging trends in the GPS industry.
Bus systems are the basis for industrial communication. Using Industrial Ethernet as the universal standard for automation makes open communication possible from the management level all the way to the process level. Additional bus systems such as PROFIBUS, AS-i, EIB, or CAN are connected to the Ethernet with their specific interfaces and communication protocols. To meet industrial requirements such as availability, real-time capability and robustness, the exchange of data must function as free of interference as possible and with minimal loss. Industry-standard connection technologies, network structures, PROFINET, and Industrial Security aid in meeting these requirements. This book conveys the fundamentals and terminology for the use of Industrial Ethernet and communication buses in industrial automation to plant planners and operators, programmers, and commissioning engineers. Readers learn how network configuration and diagnostics are implemented and what must be observed in terms of Industrial Security. Using realistic examples, beginners, newcomers, and those who want to brush up on their skills can familiarize themselves with, understand, and apply the basics of communication protocols. Content Communication buses: PROFIBUS, AS-i, EIB, CAN, Industrial Ethernet (EtherNet/IP, Modbus-TCP, PROFINET) ? Industrial Ethernet: operating principle, communication examples, diagnostics ? PROFINET: operating principle, real-time concept, Component Based Automation, components, system examples, diagnostic functions ? Networks: topology, management, diagnostics, implementation into practice ? Industrial Security: threats, Industrial Security concept, implementation
Community Informatics: Enabling Communities with Information and Communications Technologies provides an introduction to the community use of information and communications technologies, an overview of the various areas in which ICT is impacting local development and a set of case studies of CI.
This book presents iterative learning control (ILC) to address practical issues of flexible structures. It is divided into four parts: Part I provides a general introduction to ILC and flexible structures, while Part II proposes various types of ILC for simple flexible structures to address issues such as vibration, input saturation, input dead-zone, input backlash, external disturbances, and trajectory tracking. It also includes simple partial differential equations to deal with the common problems of flexible structures. Part III discusses the design of ILC for flexible micro aerial vehicles and two-link manipulators, and lastly, Part IV offers a summary of the topics covered. Unlike most of the literature on ILC, which focuses on ordinary differential equation systems, this book explores distributed parameter systems, which are comparatively less stabilized through ILC.Including a comprehensive introduction to ILC of flexible structures, it also examines novel approaches used in ILC to address input constraints and disturbance rejection. This book is intended for researchers, graduate students and engineers in various fields, such as flexible structures, external disturbances, nonlinear inputs and tracking control.
This thesis develops a pioneering methodology and a concept for identifying critical loads and load model parameters in large power networks based on their influence on power system stability. The research described in the thesis first develops an automatic load modelling tool (ALMT) that can be used to automatically build load model from actual measured power system data without human intervention and the benefits of the ALMY are explored. Secondly, it develops a pioneering framework based on Morris screening method for ranking power system load model parameters based on their influence on overall power system stability (voltage, frequency, transient and small disturbance stability) considering different load models and loading conditions. Thirdly, a novel probabilistic methodology for determining the accuracy levels of critical load model parameters has been developed. This book will be of interest to students and researchers within the field of electrical engineering, as well as industry professionals.
Image and signal processing techniques are receiving increasing interest because of their numerous real-world applications. Data is now available in different forms, different wavelengths, and even in different dimensions, creating the need for novel multidisciplinary solutions for automated data processing and analysis. Applied Signal and Image Processing: Multidisciplinary Advancements highlights the growing multidisciplinary nature of signal and image processing by focusing on emerging applications and recent advances in well-established fields. This book covers state-or-the-art applications in both signal and image processing, which include optical communication and sensing, wireless communication management, face recognition and facial imaging, solar imaging and feature detection, fractal analysis, and video processing.
This book describes the development and design of a unique combined data and power management infrastructure for small satellites. This new edition became necessary because in the frame of the system's impressive evolution from an academic prototype to one of today's most advanced core avionics, many elements were upgraded to their next technology generation and diverse new components complement the upgraded design. All elements are presented in updated respectively new chapters. This modular infrastructure was selected by the Swiss start-up ClearSpace SA for ESA's first mission ClearSpace-1 to remove space debris. Furthermore it is the baseline for the Thai national satellite development program and is used by an increasing number of universities worldwide for research studies.
This book describes systematically wireless power transfer technology using magnetic resonant coupling and electric resonant coupling and presents the latest theoretical and phenomenological approaches to its practical implementation, operation and its applications. It also discusses the difference between electromagnetic induction and magnetic resonant coupling, the characteristics of various types of resonant circuit topologies and the unique features of magnetic resonant coupling methods. Designed to be self-contained, this richly illustrated book is a valuable resource for a broad readership, from researchers to engineers and anyone interested in cutting-edge technologies in wireless power transfer.
This book is a MUST for everyone in and around the optics
community!
This book describes a set of SystemC-based virtual prototype analysis methodologies, including design understanding, verification, security validation, and design space exploration. Readers will gain an overview of the latest research results in the field of Electronic Design Automation (EDA) at the Electronic System Level (ESL). The methodologies discussed enable readers to tackle easily key tasks and applications in the design process.
This book evaluates the influence of process variations (e.g. work-function fluctuations) and radiation-induced soft errors in a set of logic cells using FinFET technology, considering the 7nm technological node as a case study. Moreover, for accurate soft error estimation, the authors adopt a radiation event generator tool (MUSCA SEP3), which deals both with layout features and electrical properties of devices. The authors also explore four circuit-level techniques (e.g. transistor reordering, decoupling cells, Schmitt Trigger, and sleep transistor) as alternatives to attenuate the unwanted effects on FinFET logic cells. This book also evaluates the mitigation tendency when different levels of process variation, transistor sizing, and radiation particle characteristics are applied in the design. An overall comparison of all methods addressed by this work is provided allowing to trace a trade-off between the reliability gains and the design penalties of each approach regarding the area, performance, power consumption, single event transient (SET) pulse width, and SET cross-section.
This book provides a comprehensive treatment of CMOS circuits for passive wireless microsystems. Major topics include: an overview of passive wireless microsystems, design challenges of passive wireless microsystems, fundamental issues of ultra-low power wireless communications, radio-frequency power harvesting, ultra-low power modulators and demodulators, ultra-low power temperature-compensated current and voltage references, clock generation and remote calibration, and advanced design techniques for ultra low-power analog signal processing.
This book takes a deep dive into ubiquitous computing for applications in health, business, education, tourism, and transportation. The rich interdisciplinary contents of the book appeal to readers from diverse disciplines who aspire to create new and innovative research initiatives and applications in ubiquitous computing. Topics include condition monitoring and diagnostics; multi-objective optimization in design, multi-objective optimization of machining parameters, and more. The book benefits researchers, advanced students, as well as practitioners interested in applications of ubiquitous computing. Features practical, tested applications in ubiquitous computing Includes applications such as health, business, education, electronics, tourism, and transportation Applicable to researchers, academics, students, and professionals
Developed by recognized experts in the field, this first-of-its-kind resource provides an overview of the basic principles of passive radar technology, real passive radar systems and new developments in the industry. It explains in-depth how passive radar works and how it differs from the active type, while demonstrating the benefits and drawbacks of the technology. The book also explores properties of ambiguity functions, digital vs. analog, digitally-coded waveforms, vertical-plane coverage, and satellite-borne and radar illuminators. The book functions as a practical guide on direct signal suppression, passive radar performance prediction and detection and tracking. It contains concrete examples of systems and results, including analog TV, FM radio, cell phone base stations, DVB-T and DAB, HF skywave transmissions, indoor WiFi and low-cost scientific remote sensing. |
![]() ![]() You may like...
Introduction To Communication Studies
George Angelopulo, Elizabeth Lubinga
Paperback
R458
Discovery Miles 4 580
Silicon Photonics, Volume 99
Chennupati Jagadish, Sebastian Lourdudoss, …
Hardcover
R5,545
Discovery Miles 55 450
Microbiorobotics - Biologically Inspired…
Minjun Kim, Agung Julius, …
Hardcover
R3,415
Discovery Miles 34 150
Nonlinear Kalman Filter for Multi-Sensor…
Jean-Philippe Condomines
Hardcover
R2,737
Discovery Miles 27 370
|