![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering
This book highlights the synthesis of polarization selection system in the background of passive noise formed by reflections from space-distributed targets. This synthesis is fulfilled as close as possible to its ideal configuration in terms of maximal signal-to-noise ratio for the matched load of radar station antenna system. It presents a new approach to radar system resolution enhancement based on the development of mathematical model for radiometric receivers with mono-pulse antenna systems, as well as creation of a new algorithm that allows increasing angular resolution during the object's search and tracking due to special signal processing.
This book describes the theoretical framework of parallel manipulators and presents examples of their application. The theoretical part begins with the theory of parallel manipulator synthesis. Working on this basis, various topology designs of one-loop and multiloop parallel manipulators are then obtained. The next section describes the zero parameters method for the analysis of mechanism (manipulator) structure with closed kinematic circuits, and includes examples of its application, highlighting its advantages compared to traditional methods. The book then presents the redundant parameters method for determining the position of special parallel manipulator links, and discusses its application in solving the direct problem of link position for multiloop manipulators. It also addresses one-loop and multiloop manipulators, and includes a solution for the direct and inverse link position problems of kinematics. In closing, the book presents a range of potential applications for parallel manipulator. These examples are intended to promote the development and implementation of new engineering solutions, e.g. in seismic protection systems, renewable energy and other areas. The book includes a wealth of material that can be used for teaching undergraduate, graduate and PhD students majoring in robotics, automation and related fields, and can also be used by researchers to solve problems in connection with introducing robotics technologies.
Risk detection and cyber security play a vital role in the use and success of contemporary computing. By utilizing the latest technological advances, more effective prevention techniques can be developed to protect against cyber threats. Detecting and Mitigating Robotic Cyber Security Risks is an essential reference publication for the latest research on new methodologies and applications in the areas of robotic and digital security. Featuring extensive coverage on a broad range of topics, such as authentication techniques, cloud security, and mobile robotics, this book is ideally designed for students, researchers, scientists, and engineers seeking current research on methods, models, and implementations of optimized security in digital contexts.
FPGAs have almost entirely replaced the traditional Application Specific Standard Parts (ASSP) such as the 74xx logic chip families because of their superior size, versatility, and speed. For example, FPGAs provide over a million fold increase in gates compared to ASSP parts. The traditional approach for hands-on exercises has relied on ASSP parts, primarily because of their simplicity and ease of use for the novice. Not only is this approach technically outdated, but it also severely limits the complexity of the designs that can be implemented. By introducing the readers to FPGAs, they are being familiarized with current digital technology and the skills to implement complex, sophisticated designs. However, working with FGPAs comes at a cost of increased complexity, notably the mastering of an HDL language, such as Verilog. Therefore, this book accomplishes the following: first, it teaches basic digital design concepts and then applies them through exercises; second, it implements these digital designs by teaching the user the syntax of the Verilog language while implementing the exercises. Finally, it employs contemporary digital hardware, such as the FPGA, to build a simple calculator, a basic music player, a frequency and period counter and it ends with a microprocessor being embedded in the fabric of the FGPA to communicate with the PC. In the process, readers learn about digital mathematics and digital-to-analog converter concepts through pulse width modulation.
This book is of interest to researchers wanting to know more about the latest topics and methods in the fields of the kinematics, control and design of robotic systems. The papers cover the full range of robotic systems, including serial, parallel and cable-driven manipulators. The systems range from being less than fully mobile, to kinematically redundant, to over-constrained. The book brings together 43 peer-reviewed papers. They report on the latest scientific and applied achievements. The main theme that connects them is the movement of robots in the most diverse areas of application.
In this practical reference, popular author Lewin Edwards shows how
to develop robust, dependable real-time systems for robotics and
other control applications, using open-source tools. It
demonstrates efficient and low-cost embedded hardware and software
design techniques, based on Linux as the development platform and
operating system and the Atmel AVR as the primary microcontroller.
The book provides comprehensive examples of sensor, actuator and
control applications and circuits, along with source code for a
number of projects. It walks the reader through the process of
setting up the Linux-based controller, from creating a custom
kernel to customizing the BIOS, to implementing graphical control
interfaces.
The focus of Assertion-Based Design is three-fold: To support these three over-arching goals, the authors showcase multiple forms of assertion specification: Accellera Open Verification Library (OVL), Accellera Property Specification Language (PSL), and Accellera SystemVerilog. The recommendations and claims the authors make in this book are based on their combined actual experiences in applying an assertion-based methodology to real design and verification as well as their work in developing industry assertion standards.
The proceedings publishes new research results of scholars from the First International Conference on Agriculture and Information (ICAIT2019) organized by IRNet International Academic Communication Center, held during November 22-24, 2019. The book covers works from active researchers who are working on collaboration of agriculture and various information technologies such as ICT (Information and Communication Technologies) applicable/applied to agricultural produce, manufacturing preservation and distribution of agricultural products, etc. The book focuses on theory, design, development, testing and evaluation of all information technologies applicable/applied to various parts of agriculture and its infrastructure. The topics included are information technologies applicable to smart agriculture, intelligent information systems for smart farm systems, web-based intelligent information systems on agriculture, ICT-based marketing of agricultural products, agricultural product consumption network systems, IoT for agricultural produce and products, soft computing theories, intelligent management for agriculture, data science techniques for agriculture.
This book highlights the fundamental principles of optical fiber technology required for understanding modern high-capacity lightwave telecom networks. Such networks have become an indispensable part of society with applications ranging from simple web browsing to critical healthcare diagnosis and cloud computing. Since users expect these services to always be available, careful engineering is required in all technologies ranging from component development to network operations. To achieve this understanding, this book first presents a comprehensive treatment of various optical fiber structures and diverse photonic components used in optical fiber networks. Following this discussion are the fundamental design principles of digital and analog optical fiber transmission links. The concluding chapters present the architectures and performance characteristics of optical networks.
Finally, here is a single volume containing all of the engineering
information needed to successfully design and implement any type of
wireless network Author Dan Dobkin covers every aspect of RF
engineering necessary for wireless networks. He begins with a
review of essential math and electromagnetic theory followed by
thorough discussions of multiplexing, modulation types, bandwidth,
link budgets, network concepts, radio system architectures, RF
amplifiers, mixers and frequency conversion, filters, single-chip
radio systems, antenna theory and designs, signal propagation, as
well as planning and implementing wireless networks for both indoor
and outdoor environments. . The A-to-Z guide to wireless network engineering covers
everything from basic electromagnetic theory to modulation
techniques to network planning and implementation
Without sensors most electronic applications would not exist-they
perform a vital function, namely providing an interface to the real
world. The importance of sensors, however, contrasts with the
limited information available on them. Today's smart sensors,
wireless sensors, and microtechnologies are revolutionizing sensor
design and applications. This volume is an up-to-date and
comprehensive sensor reference guide to be used by engineers and
scientists in industry, research, and academia to help with their
sensor selection and system design. It is filled with hard-to-find
information, contributed by noted engineers and companies working
in the field today. The book will offer guidance on selecting,
specifying, and using the optimum sensor for any given application.
The editor-in-chief, Jon Wilson, has years of experience in the
sensor industry and leads workshops and seminars on sensor-related
topics.
This book systematically presents the operating principles and technical characteristics of the main radio navigating systems (RNSs) that make it possible to adequately evaluate the corresponding scratch indexes and levels of air safety for air vehicles, the chief concern of the International Civil Aviation Organization (ICAO). The book discusses how RNS systems substantially determine navigation accuracy and reliability, and therefore air safety; in addition, it presents practical solutions to problems arising in the operation and development of RNS systems.
Out-of-print for years, this highly sought-after volume, remains the most popular reference on inertial navigation systems analysis. Finally, this classic book is back in print and readily available only from Artech House. Authored by a pioneer in the field, this authoritative resource focuses on terrestrial navigation, but is also useful for air and sea applications. Packed with valuable, time-saving equations and models, the book helps engineers design optimal navigation systems by comparing the performance of the various types of system mechanizations. Although applications and technology have changed over the years, this book remains the best source for fundamental inertial navigation system knowledge, from notational conventions, reference frames, and geometry of the earth, to unified error analysis, self-alignment techniques, and the development of a system error model. This well-illustrated, timeless reference belongs on the shelf of every practicing engineer working in this area. It is suitable for electrical engineers working in the area of GPS and other navigation systems, as well as for graduate engineering students in related courses.
To operate future generation multimedia communications systems high data rate transmission needs to be guaranteed with a high quality of service. For instance, the third generation cellular mobile systems should offer a high data rate up to 2 Mbit/s for video, audio, speech and data transmission. The important challenge for these cellular systems will be the choice of an appropriate multiple access scheme. The advantages of the spread spectrum technique are: High immunity against multipath distortion, no need for frequency planning, high flexibility and easier variable rate transmission etc. On the other hand, the technique of multi-carrier transmission has recently been receiving wide interest for high data rate applications. The advantages of multi-carrier transmission are the robustness in the case of frequency selective fading channels, in particular the reduced signal processing complexity by equalization in the frequency domain, and in the capability of narrow-band interference rejection. The advantages and success of multi-carrier (MC) modulation and the spread spectrum (SS) technique has led to the combination of MCM with SS, known as multi-carrier spread-spectrum (MC-SS) for cellular systems. This combination, benefits from the advantages of both schemes: Higher flexibility, higher spectral efficiency, simpler detection techniques, narrow band interference rejection capability, etc. Multicarrier-Spread-Spectrum comprises a collection of papers which collectively provide a state-of-the-art overview of this emerging multiple access scheme. It will be a valuable reference for all researchers and practitioners working on the area of wireless communications and networking.
This book provides a brief research source for optical fiber sensors for energy production and storage systems, discussing fundamental aspects as well as cutting-edge trends in sensing. This volume provides industry professionals, researchers and students with the most updated review on technologies and current trends, thus helping them identify technology gaps, develop new materials and novel designs that lead to commercially viable energy storage systems.
This book presents a collection of "lessons" on various topics commonly encountered in electronic circuit design, including some basic circuits and some complex electronic circuits, which it uses as vehicles to explain the basic circuits they are composed of. The circuits considered include a linear amplifier, oscillators, counters, a digital clock, power supplies, a heartbeat detector, a sound equalizer, an audio power amplifier and a radio. The theoretical analysis has been deliberately kept to a minimum, in order to dedicate more time to a "learning by doing" approach, which, after a brief review of the theory, readers are encouraged to use directly with a simulator tool to examine the operation of circuits in a "virtual laboratory." Though the book is not a theory textbook, readers should be familiar with the basic principles of electronic design, and with spice-like simulation tools. To help with the latter aspect, one chapter is dedicated to the basic functions and commands of the OrCad P-spice simulator used for the experiments described in the book.
The book introduces some challenging methods and solutions to solve the human activity recognition challenge. This book highlights the challenge that will lead the researchers in academia and industry to move further related to human activity recognition and behavior analysis, concentrating on cooking challenge. Current activity recognition systems focus on recognizing either the complex label (macro-activity) or the small steps (micro-activities) but their combined recognition is critical for analysis like the challenge proposed in this book. It has 10 chapters from 13 institutes and 8 countries (Japan, USA, Switzerland, France, Slovenia, China, Bangladesh, and Columbia).
This book presents advanced studies on the conversion efficiency, mechanical reliability, and the quality of power related to wind energy systems. The main concern regarding such systems is reconciling the highly intermittent nature of the primary source (wind speed) with the demand for high-quality electrical energy and system stability. This means that wind energy conversion within the standard parameters imposed by the energy market and power industry is unachievable without optimization and control. The book discusses the rapid growth of control and optimization paradigms and applies them to wind energy systems: new controllers, new computational approaches, new applications, new algorithms, and new obstacles.
Today s control system designers face an ever-increasing need for
speed and accuracy in their system measurements and computations.
New design approaches using microcontrollers and DSP are emerging,
and designers must understand these new approaches, the tools
available, and how best to apply them.
This book provides a unique approach to derive model-based torque controllers for all types of Lorentz force machines, i.e. DC, synchronous and induction machines. The rotating transformer model forms the basis for the generalized modeling approach of rotating field machines, which leads to the development of universal field-oriented control algorithms. Contrary to this, direct torque control algorithms, using observer-based methods, are developed for switched reluctance machines. Tutorials are included at the end of each chapter, and the reader is encouraged to execute these tutorials in order to gain familiarity with the dynamic behavior of drive systems. This updated edition uses PLECS (R) simulation and vector processing tools that were specifically adopted for the purpose of these hands-on tutorials. Hence, Advanced Electrical Drives encourages "learning by doing" and the experienced drive specialist may find the simulation tools useful to design high-performance torque controllers. Although it is a powerful reference in its own right, when used in conjunction with the companion texts Fundamentals of Electrical Drives and Applied Control of Electrical Drives, this book provides a uniquely comprehensive reference set that takes readers all the way from understanding the basics of how electrical drives work, to deep familiarity with advanced features and models, to a mastery of applying the concepts to actual hardware in practice. Teaches readers to perform insightful analysis of AC electrical machines and drives; Introduces new modeling methods and modern control techniques for switched reluctance drives; Updated to use PLECS (R) simulation tools for modeling electrical drives, including new and more experimental results; Numerous tutorials at end of each chapter to learn by doing, step-by-step; Includes extra material featuring "build and play" lab modules, for lectures and self-study.
Modelling in polymer materials science has experienced a dramatic
growth in the last two decades. Advances in modeling methodologies
together with rapid growth in computational power have made it
possible to address increasingly complex questions both of a
fundamental and of a more applied nature.
This volume is authored by a mix of global contributors from across the landscape of academia, research institutions, police organizations, and experts in security policy and private industry to address some of the most contemporary challenges within the global security domain. The latter includes protection of critical infrastructures (CI), counter-terrorism, application of dark web, and analysis of a large volume of artificial intelligence data, cybercrime, serious and organised crime, border surveillance, and management of disasters and crises. This title explores various application scenarios of advanced ICT in the context of cybercrime, border security and crisis management, serious and organised crime, and protection of critical infrastructures. Readers will benefit from lessons learned from more than 30 large R&D projects within a security context. The book addresses not only theoretical narratives pertinent to the subject but also identifies current challenges and emerging security threats, provides analysis of operational capability gaps, and includes real-world applied solutions. Chapter 11 is available open access under a Creative Commons Attribution 3.0 IGO License via link.springer.com and Chapter 16 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com
This is the fourth volume of the successful series Robot Operating Systems: The Complete Reference, providing a comprehensive overview of robot operating systems (ROS), which is currently the main development framework for robotics applications, as well as the latest trends and contributed systems. The book is divided into four parts: Part 1 features two papers on navigation, discussing SLAM and path planning. Part 2 focuses on the integration of ROS into quadcopters and their control. Part 3 then discusses two emerging applications for robotics: cloud robotics, and video stabilization. Part 4 presents tools developed for ROS; the first is a practical alternative to the roslaunch system, and the second is related to penetration testing. This book is a valuable resource for ROS users and wanting to learn more about ROS capabilities and features. |
![]() ![]() You may like...
Ultra and Extremely Low Frequency…
Vadim Surkov, Masashi Hayakawa
Hardcover
Introduction to the Thermodynamically…
William G. Gray, Cass T. Miller
Hardcover
R4,465
Discovery Miles 44 650
Achievements, History and Challenges in…
Robert Bialik, Mariusz Majdanski, …
Hardcover
Active Geophysical Monitoring
Hitoshi Mikada, Michael S. Zhdanov, …
Paperback
R4,108
Discovery Miles 41 080
Handbook of Electronic Assistive…
Ladan Najafi, Donna Cowan
Paperback
Specious Science - How Genetics and…
C.Ray Greek, Jean Swingle Greek
Hardcover
R2,183
Discovery Miles 21 830
China Satellite Navigation Conference…
Jiadong Sun, Jingnan Liu, …
Hardcover
R8,526
Discovery Miles 85 260
Geophysical Exploration of the Solar…
Cedric Schmelzbach, Simon Christian Stahler
Hardcover
|