![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering
This is the fifth volume of a sub series on Road Vehicle Automation published within the Lecture Notes in Mobility. Like in previous editions, scholars, engineers and analysts from all around the world have contributed chapters covering human factors, ethical, legal, energy and technology aspects related to automated vehicles, as well as transportation infrastructure and public planning. The book is based on the Automated Vehicles Symposium which was hosted by the Transportation Research Board (TRB) and the Association for Unmanned Vehicle Systems International (AUVSI) in San Francisco, California (USA) in July 2017.
With growing developments in artificial intelligence and focus on swarm behaviours; algorithms have been utilised in solving a variety of problems in the field of engineering. This approach has been specifically suited to face the challenges in electric and electronic engineering. Swarm Intelligence for Electric and Electronic Engineering provides an exchange of knowledge on the advances, discoveries, and improvements of swarm intelligence in electric and electronic engineering. This comprehensive collection aims to bring together new swarm-based algorithms as well as approaches to complex problems and various real-world applications.
Based on familiar circuit theory and basic physics, this book
serves as an invaluable reference for both analog and digital
engineers alike. For those who work with analog RF, this book is a
must-have resource. With computers and networking equipment of the
21st century running at such high frequencies, it is now crucial
for digital designers to understand electromagnetic fields,
radiation and transmission lines. This knowledge is necessary for
maintaining signal integrity and achieving EMC compliance. Since
many digital designers are lacking in analog design skills, let
alone electromagnetics, an easy-to-read but informative book on
electromagnetic topics should be considered a welcome addition to
their professional libraries.
This book covers ALL aspects of projected capacitive touch sensors including basic principles, the physics of PCAP, capacitance measurements, touch sensor materials and construction, electrical noise, software drivers, and testing. It is targeted at working engineers who are implementing touch into their products as well as anyone else with an interest in how touch screens work. * Offers readers the first book on the use of projected capacitive (PCAP) touch technology for touch screens; * Explains not only how PCAP touch works, but also addresses the implementation details an engineer needs when incorporating PCAP into their product; * Includes explanations of different cover lens materials, cover lens coatings, software drivers, touch testing, and many other areas of general knowledge that would be useful to a design engineer.
This book offers a concise primer on energy conversion efficiency and the Shockley-Queisser limit in single p-n junction solar cells. It covers all the important fundamental physics necessary to understand the conversion efficiency, which is indispensable in studying, investigating, analyzing, and designing solar cells in practice. As such it is valuable as a supplementary text for courses on photovoltaics, and bridges the gap between advanced topics in solar cell device engineering and the fundamental physics covered in undergraduate courses. The book first introduces the principles and features of solar cells compared to those of chemical batteries, and reviews photons, statistics and radiation as the physics of the source energy. Based on these foundations, it clarifies the conversion efficiency of a single p-n junction solar cell and discusses the Shockley-Queisser limit. Furthermore, it looks into various concepts of solar cells for breaking through the efficiency limit given in the single junction solar cell and presents feasible theoretical predictions. To round out readers' knowledge of p-n junctions, the final chapter also reviews the essential semiconductor physics. The foundation of solar cell physics and engineering provided here is a valuable resource for readers with no background in solar cells, such as upper undergraduate and master students. At the same time, the deep insights provided allow readers to step seamlessly into other advanced books and their own research topics.
Handbook of Organic Materials for Electronic and Photonic Devices, Second Edition, provides an overview of the materials, mechanisms, characterization techniques, structure-property relationships, and most promising applications of organic materials. This new release includes new content on emerging organic materials, expanded content on the basic physics behind electronic properties, and new chapters on organic photonics. As advances in organic materials design, fabrication, and processing that enabled charge unprecedented carrier mobilities and power conversion efficiencies have made dramatic advances since the first edition, this latest release presents a necessary understanding of the underlying physics that enabled novel material design and improved organic device design.
This book studies the dynamics of fundamental collective excitations in quantum materials, focusing on the use of state-of-the-art ultrafast broadband optical spectroscopy. Collective behaviour in solids lies at the origin of several cooperative phenomena that can lead to profound transformations, instabilities and phase transitions. Revealing the dynamics of collective excitations is a topic of pivotal importance in contemporary condensed matter physics, as it provides information on the strength and spatial distribution of interactions and correlation. The experimental framework explored in this book relies on setting a material out-of-equilibrium by an ultrashort laser pulse and monitoring the photo-induced changes in its optical properties over a broad spectral region in the visible or deep-ultraviolet. Collective excitations (e.g. plasmons, excitons, phonons...) emerge either in the frequency domain as spectral features across the probed range, or in the time domain as coherent modes triggered by the pump pulse. Mapping the temporal evolution of these collective excitations provides access to the hierarchy of low-energy phenomena occurring in the solid during its path towards thermodynamic equilibrium. This methodology is used to investigate a number of strongly interacting and correlated materials with an increasing degree of internal complexity beyond conventional band theory.
Accessible to all readers, including students of secondary school
and amateur technology enthusiasts, Robotics, Mechatronics, and
Artificial Intelligence simplifies the process of finding basic
circuits to perform simple tasks, such as how to control a DC or
step motor, and provides instruction on creating moving robotic
parts, such as an "eye" or an "ear." Though many companies offer
kits for project construction, most experimenters want to design
and build their own robots and other creatures specific to their
needs and goals. With this new book by Newton Braga, hobbyists and
experimenters around the world will be able to decide what skills
they want to feature in a project and then choose the right
"building blocks" to create the ideal results.
This thesis presents first successful experiments to carrier-envelope-phase stabilize a high-power mode-locked thin-disk oscillator and to compress the pulses emitted from this laser to durations of only a few-optical cycles. Moreover, the monograph introduces several methods to achieve power-scalability of compression and stabilization techniques. All experimental approaches are compared in detail and may serve as a guideline for developing high-power waveform controlled, few-cycle light sources which offer tremendous potential to exploit extreme nonlinear optical effects at unprecedentedly high repetition rates and to establish table-top infrared light sources with a unique combination of brilliance and bandwidth. As an example, the realization of a multi-Watt, multi-octave spanning, mid-infrared femtosecond source is described. The thesis starts with a basic introduction to the field of ultrafast laser oscillators. It subsequently presents additional details of previously published research results and establishes a connection between them. It therefore addresses both newcomers to, and experts in the field of high-power ultrafast laser development.
Mechanical and thermal properties are reviewed and electrical and magnetic properties are emphasized. Basics of symmetry and internal structure of crystals and the main properties of metals, dielectrics, semiconductors, and magnetic materials are discussed. The theory and modern experimental data are presented, as well as the specifications of materials that are necessary for practical application in electronics. The modern state of research in nanophysics of metals, magnetic materials, dielectrics and semiconductors is taken into account, with particular attention to the influence of structure on the physical properties of nano-materials. The book uses simplified mathematical treatment of theories, while emphasis is placed on the basic concepts of physical phenomena in electronic materials. Most chapters are devoted to the advanced scientific and technological problems of electronic materials; in addition, some new insights into theoretical facts relevant to technical devices are presented. Electronic Materials is an essential reference for newcomers to the field of electronics, providing a fundamental understanding of important basic and advanced concepts in electronic materials science.
This book is a collection of some of the invited talks presented at
the international meeting held at the Max Planck Institut fuer
Physik Komplexer Systeme, Dresden, Germany during August 6-30,
2001, on the rapidly developing field of nanoscale science in
science and bio-electronics Semiconductor physics has experienced
unprecedented developments over the second half of the twentieth
century. The exponential growth in microelectronic processing power
and the size of dynamic memorie has been achieved by significant
downscaling of the minimum feature size. Smaller feature sizes
result in increased functional density, faster speed, and lower
costs. In this process one is reaching the limits where quantum
effects and fluctuations are beginning to play an important
role.
This book provides readers with an overview of the architectures, programming frameworks, and hardware accelerators for typical cloud computing applications in data centers. The authors present the most recent and promising solutions, using hardware accelerators to provide high throughput, reduced latency and higher energy efficiency compared to current servers based on commodity processors. Readers will benefit from state-of-the-art information regarding application requirements in contemporary data centers, computational complexity of typical tasks in cloud computing, and a programming framework for the efficient utilization of the hardware accelerators.
Written to provide information on all price ranges of equipment to
everyone from the beginner to the experienced home theater owner,
Build Your Own Home Theater has been completely updated for today's
audience. This new edition contains valuable consumer information
on the latest digital home theater components and technology,
including digital surround sound receivers, DVD players, digital
television & HDTV, digital satellites (DBS), digital
camcorders, and digital hard-drive video recorders. It also
features easy-to-understand explanations of surround sound
technology and set ups including Dolbya Digital, THX Surround EXTM,
and DTS-ESTM.
This book comprehensively covers the important efforts in improving the quality of images in visual cryptography (VC), with a focus on cases with gray scale images. It not only covers schemes in traditional VC and extended VC for binary secret images, but also the latest development in the analysis-by-synthesis approach. This book distinguishes itself from the existing literature in three ways. First, it not only reviews traditional VC for binary secret images, but also covers recent efforts in improving visual quality for gray scale secret images. Second, not only traditional quality measures are reviewed, but also measures that were not used for measuring perceptual quality of decrypted secret images, such as Radially Averaged Power Spectrum Density (RAPSD) and residual variance, are employed for evaluating and guiding the design of VC algorithms. Third, unlike most VC books following a mathematical formal style, this book tries to make a balance between engineering intuition and mathematical reasoning. All the targeted problems and corresponding solutions are fully motivated by practical applications and evaluated by experimental tests, while important security issues are presented as mathematical proof. Furthermore, important algorithms are summarized as pseudocodes, thus enabling the readers to reproduce the results in the book. Therefore, this book serves as a tutorial for readers with an engineering background as well as for experts in related areas to understand the basics and research frontiers in visual cryptography.
This book discusses the new roles that the VLSI (very-large-scale integration of semiconductor circuits) is taking for the safe, secure, and dependable design and operation of electronic systems. The book consists of three parts. Part I, as a general introduction to this vital topic, describes how electronic systems are designed and tested with particular emphasis on dependability engineering, where the simultaneous assessment of the detrimental outcome of failures and cost of their containment is made. This section also describes the related research project "Dependable VLSI Systems," in which the editor and authors of the book were involved for 8 years. Part II addresses various threats to the dependability of VLSIs as key systems components, including time-dependent degradations, variations in device characteristics, ionizing radiation, electromagnetic interference, design errors, and tampering, with discussion of technologies to counter those threats. Part III elaborates on the design and test technologies for dependability in such applications as control of robots and vehicles, data processing, and storage in a cloud environment and heterogeneous wireless telecommunications. This book is intended to be used as a reference for engineers who work on the design and testing of VLSI systems with particular attention to dependability. It can be used as a textbook in graduate courses as well. Readers interested in dependable systems from social and industrial-economic perspectives will also benefit from the discussions in this book.
Fuelled by advances in computer technology, model-based approaches to the control of industrial processes are now widespread. While there is an enormous literature on modelling, the difficult first step of selecting an appropriate model structure has received almost no attention. This book fills the gap, providing practical insight into model selection for chemical processes and emphasizing structures suitable for control system design.
Reliability is one of the fundamental criteria in engineering systems. Design and maintenance serve to support it throughout the systems life. As such, maintenance acts in parallel to production and can have a great impact on the availability and capacity of production and the quality of the products. The authors describe current and innovative methods useful to industry and society. |
You may like...
Handbook of Electronic Assistive…
Ladan Najafi, Donna Cowan
Paperback
Introduction To Communication Studies
George Angelopulo, Elizabeth Lubinga
Paperback
R458
Discovery Miles 4 580
Dark Silicon and Future On-chip Systems…
Suyel Namasudra, Hamid Sarbazi-Azad
Hardcover
R3,940
Discovery Miles 39 400
Design of Nanostructures for Versatile…
Alexandru Mihai Grumezescu
Paperback
|