Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Electronics & communications engineering
This book describes the most frequently used high-speed serial buses in embedded systems, especially those used by FPGAs. These buses employ SerDes, JESD204, SRIO, PCIE, Aurora and SATA protocols for chip-to-chip and board-to-board communication, and CPCIE, VPX, FC and Infiniband protocols for inter-chassis communication. For each type, the book provides the bus history and version info, while also assessing its advantages and limitations. Furthermore, it offers a detailed guide to implementing these buses in FPGA design, from the physical layer and link synchronization to the frame format and application command. Given its scope, the book offers a valuable resource for researchers, R&D engineers and graduate students in computer science or electronics who wish to learn the protocol principles, structures and applications of high-speed serial buses.
This book summarizes the most recent and compelling experimental results for complex oxide interfaces. The results of this book were obtained with the cutting-edge photoemission technique at highest energy resolution. Due to their fascinating properties for new-generation electronic devices and the challenge of investigating buried regions, the book chiefly focuses on complex oxide interfaces. The crucial feature of exploring buried interfaces is the use of soft X-ray angle-resolved photoemission spectroscopy (ARPES) operating on the energy range of a few hundred eV to increase the photoelectron mean free path, enabling the photons to penetrate through the top layers - in contrast to conventional ultraviolet (UV)-ARPES techniques. The results presented here, achieved by different research groups around the world, are summarized in a clearly structured way and discussed in comparison with other photoemission spectroscopy techniques and other oxide materials. They are complemented and supported by the most recent theoretical calculations as well as results of complementary experimental techniques including electron transport and inelastic resonant X-ray scattering.
This textbook provides materials for an introductory course in Engineering Acoustics for students with a basic knowledge of mathematics. The contents are based on extensive teaching experience at the graduate level. Each of the 14 main chapters deals with a well-defined topic and represents the material for a two-hour lecture. The chapters alternate between more theoretical and more application-oriented concepts. The presentation is organized to be suitable for self-study as well. For this third edition, the complete text and many figures have been revised. Several current amendments take account of advancements in the field. Further, a completely new chapter has been added which presents approaches and solutions to all assigned exercise problems. The new chapter offers the opportunity to explore the underlying theoretical background in more detail. However, the study of the problems and their proposed solutions is no prerequisite for comprehending the material presented in the book's lecture part.
Achieve first-time-success designing RF and microwave amplifiers and oscillators using the iterative synthesis techniques provided in this practical resource. The book introduces new approaches to help you estimate the 1dB compression point of class A and class B linear circuits, initialize the fundamental component voltages and currents in a harmonic balance simulator, and more easily generate load-pull contours for class A and class B transistors. Considered as a generalization of the Cripps approach, this independently developed method can be applied easily to control or predict the output power in single- or multi-stage amplifiers. Changes in the transistor's configuration, as well as feedback and loading can also be handled smoothly. This book helps you: The book also includes all of the design principles, theory, and background from the well-received first edition. It is an excellent resource for amplifier and oscillator designers, RF and microwave engineers, and university students.
Discrete-Time and Discrete-Space Dynamical Systems provides a systematic characterization of the similarities and differences of several types of discrete-time and discrete-space dynamical systems, including: Boolean control networks; nondeterministic finite-transition systems; finite automata; labelled Petri nets; and cellular automata. The book's perspective is primarily based on topological properties though it also employs semitensor-product and graph-theoretic methods where appropriate. It presents a series of fundamental results: invertibility, observability, detectability, reversiblity, etc., with applications to systems biology. Academic researchers with backgrounds in applied mathematics, engineering or computer science and practising engineers working with discrete-time and discrete-space systems will find this book a helpful source of new understanding for this increasingly important class of systems. The basic results to be found within are of fundamental importance for further study of related problems such as automated synthesis and safety control in cyber-physical systems using formal methods.
Advanced research in the field of mechatronics and robotics represents a unifying interdisciplinary and intelligent engineering science paradigm. It is a holistic, concurrent, and interdisciplinary engineering science that identifies novel possibilities of synergizing and fusing different disciplines. The Handbook of Research on Advanced Mechatronic Systems and Intelligent Robotics is a collection of innovative research on the methods and applications of knowledge in both theoretical and practical skills of intelligent robotics and mechatronics. While highlighting topics including green technology, machine learning, and virtual manufacturing, this book is ideally designed for researchers, students, engineers, and computer practitioners seeking current research on developing innovative ideas for intelligent robotics and autonomous and smart interdisciplinary mechatronic products.
The scope of image processing and recognition has broadened due to the gap in scientific visualization. Thus, new imaging techniques have developed, and it is imperative to study this progression for optimal utilization. Big Data Analytics for Satellite Image Processing and Remote Sensing is a critical scholarly resource that examines the challenges and difficulties of implementing big data in image processing for remote sensing and related areas. Featuring coverage on a broad range of topics, such as distributed computing, parallel processing, and spatial data, this book is geared towards scientists, professionals, researchers, and academicians seeking current research on the use of big data analytics in satellite image processing and remote sensing.
This book discusses the principle of automotive intelligent technology from the point of view of modern sensing and intelligent control. Based on the latest research in the field, it explores safe driving with intelligent vision; intelligent monitoring of dangerous driving; intelligent detection of automobile power and transmission systems; intelligent vehicle navigation and transportation systems; and vehicle-assisted intelligent technology. It draws on the author's research in the field of automotive intelligent technology to explain the fundamentals of vehicle intelligent technology, from the information sensing principle to mathematical models and the algorithm basis, enabling readers to grasp the concepts of automotive intelligent technology. Opening up new scientific horizons and fostering innovative thinking, the book is a valuable resource for researchers as well as undergraduate and graduate students.
Recent rapid advances in femtosecond technology have had a great impact on their industrial applications such as: ultrafast optoelectronic devices and optical telecommunication systems, ultrashort-pulse lasers and measurement systems, and the development of novel materials for ultrafast functions. In this book, a wealth of knowledge covering requirements in applications details of recent achievements in important technical areas is presented by world-prominent authors in a concise, systematic form. As a whole, this is the first comprehensive book on the emerging field of femtosecond technology.
This book shares important findings on the application of robotics in industry using advanced mechanisms, including software and hardware. It presents a collection of recent trends and research on various advanced computing paradigms such as soft computing, robotics, smart automation, power control, and uncertainty analysis. The book constitutes the proceedings of the 1st International Conference on Application of Robotics in Industry using Advanced Mechanisms (ARIAM2019), which offered a platform for sharing original research findings, presenting innovative ideas and applications, and comparing notes on various aspects of robotics. The contributions highlight the latest research and industrial applications of robotics, and discuss approaches to improving the smooth functioning of industries. Moreover, they focus on designing solutions for complex engineering problems and designing system components or processes to meet specific needs, with due considerations for public health and safety, including cultural, societal, and environmental considerations. Taken together, they offer a valuable resource for researchers, scientists, engineers, professionals and students alike.
This book presents selected research papers from CISC'17, held in MudanJiang, China. The topics covered include Multi-agent system, Evolutionary Computation, Artificial Intelligence, Complex systems, Computation intelligence and soft computing, Intelligent control, Advanced control technology, Robotics and applications, Intelligent information processing, Iterative learning control, Machine Learning, and etc. Engineers and researchers from academia, industry, and government can gain valuable insights into solutions combining ideas from multiple disciplines in the field of intelligent systems.
This book presents an in-depth overview of recent work related to the safety, security, and privacy of cyber-physical systems (CPSs). It brings together contributions from leading researchers in networked control systems and closely related fields to discuss overarching aspects of safety, security, and privacy; characterization of attacks; and solutions to detecting and mitigating such attacks. The book begins by providing an insightful taxonomy of problems, challenges and techniques related to safety, security, and privacy for CPSs. It then moves through a thorough discussion of various control-based solutions to these challenges, including cooperative fault-tolerant and resilient control and estimation, detection of attacks and security metrics, watermarking and encrypted control, privacy and a novel defense approach based on deception. The book concludes by discussing risk management and cyber-insurance challenges in CPSs, and by presenting the future outlook for this area of research as a whole. Its wide-ranging collection of varied works in the emerging fields of security and privacy in networked control systems makes this book a benefit to both academic researchers and advanced practitioners interested in implementing diverse applications in the fields of IoT, cooperative autonomous vehicles and the smart cities of the future.
The research book is a continuation of the authors' previous works, which are focused on recent advances in computer vision methodologies and technical solutions using conventional and intelligent paradigms. The book gathers selected contributions addressing a number of real-life applications including the identification of handwritten texts, watermarking techniques, simultaneous localization and mapping for mobile robots, motion control systems for mobile robots, analysis of indoor human activity, facial image quality assessment, android device controlling, processing medical images, clinical decision-making and foot progression angle detection. Given the tremendous interest among researchers in the development and applications of computer vision paradigms in the field of business, engineering, medicine, security and aviation, the book offers a timely guide for all PhD students, professors, researchers and software developers working in the areas of digital video processing and computer vision technologies.
This monograph provides a comprehensive analysis of the control of singularly perturbed time delay systems. Expanding on the author's previous work on controllability of linear systems with delays in the state and control variables, this volume's comprehensive coverage makes it a valuable addition to the field. Each chapter is self-contained, allowing readers to study them independently or in succession. After a brief introduction, the book systematically examines properties of different classes of singularly perturbed time delay systems, including linear time-dependent systems with multiple point-wise and distributed state delays. The author then considers more general singularly perturbed systems with state and control delays. Euclidean space controllability for all of these systems is also discussed, using numerous examples from real-life models throughout the text to illustrate the results presented. More technically complicated proofs are presented in separate subsections. The final chapter includes a section dedicated to non-linear time delay systems. This book is ideal for researchers, engineers, and graduate students in systems science and control theory. Other applied mathematicians and researchers working in biology and medicine will also find this volume to be a valuable resource.
This book is the volume of the proceedings for the 17th Edition of ISER. The goal of ISER (International Symposium on Experimental Robotics) symposia is to provide a single-track forum on the current developments and new directions of experimental robotics. The series has traditionally attracted a wide readership of researchers and practitioners interested to the advances and innovations of robotics technology. The 54 contributions cover a wide range of topics in robotics and are organized in 9 chapters: aerial robots, design and prototyping, field robotics, human-robot interaction, machine learning, mapping and localization, multi-robots, perception, planning and control. Experimental validation of algorithms, concepts, or techniques is the common thread running through this large research collection. Chapter "A New Conversion Method to Evaluate the Hazard Potential of Collaborative Robots in Free Collisions" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
This book addresses the needs of researchers and practitioners in the field of high-speed trains, especially those whose work involves safety and reliability issues in traction systems. It will appeal to researchers and graduate students at institutions of higher learning, research labs, and in the industrial R&D sector, catering to a readership from a broad range of disciplines including intelligent transportation, electrical engineering, mechanical engineering, chemical engineering, the biological sciences and engineering, economics, ecology, and the mathematical sciences.
The proceedings collect the latest research trends, methods and experimental results in the field of electrical and information technologies for rail transportation. The topics cover novel traction drive technologies of rail transportation, safety technology of rail transportation system, rail transportation information technology, rail transportation operational management technology, rail transportation cutting-edge theory and technology etc. The proceedings can be a valuable reference work for researchers and graduate students working in rail transportation, electrical engineering and information technologies.
This book highlights and investigates novel solid-state luminescent properties of crystals with stimuli-responsive behavior. Several novel molecular designs for controlling crystal structures with photo-physical properties are described, with a special focus on external stimuli-responsive properties. The major goal of the material design concept was to capitalize on the chirality of crystals with stimuli-responsive properties. To allow crystals' chirality to be controlled and modified by means of external stimulation, the axial chirality of biaryl moiety was employed and, interestingly, produced several novel mechano- and vapo-responsive luminescent properties based on crystal-to-crystal or single-crystal-to-single-crystal phase transitions. In addition, the book details how the molecular rotation of luminophores in the solid phase can be used to achieve corresponding thermal-responsive phosphorescence. The reports presented here illustrate how the author has succeeded in controlling structural factors in a bulk environment by using molecular design with linking to photo-physical properties. The content will be of great interest to researchers in the field, and to members of chemical and material science societies.
This book proposes new technologies and discusses future solutions for ICT design infrastructures, as reflected in high-quality papers presented at the 5th International Conference on ICT for Sustainable Development (ICT4SD 2020), held in Goa, India, on 23-24 July 2020. The conference provided a valuable forum for cutting-edge research discussions among pioneering researchers, scientists, industrial engineers, and students from all around the world. Bringing together experts from different countries, the book explores a range of central issues from an international perspective.
This book fills in details that are often left out of modern books on the theory of antennas. The starting point is a discussion of some general principles that apply to all electronic systems and to antennas in particular. Just as time domain functions can be expanded in terms of sine waves using Fourier transforms, spatial domain functions can be expanded in terms of plane waves also using Fourier transforms, and K-space gain is the spatial Fourier transform of the aperture weighting function. Other topics discussed include the Discrete Fourier Transform (DFT) formulation of antenna gain and what is missing in this formulation, the effect of sky temperature on the often specified G/T ratio of antennas, sidelobe control using conventional and novel techniques, and ESA digital beamforming versus adaptive processing to limit interference. Presents content the author derived when first asked to evaluate the performance of an electronically scanned array under design with manufacturing imperfections and design limitations; Enables readers to understand the firm theoretical foundation of antenna gain even when they must start from well-known formulations rather than first principles; Explains in a straightforward manner the relationship between antenna gain and aperture area; Discusses the relationship between sidelobe control algorithms and aperture shape, how to take advantage of it, and what the penalties are; Shows the equivalence of Minimum-Variance, Distortionless Response (MVDR) and Space-Time Adaptive Processing (STAP) and how these algorithms can be used with ESA subarrays to mitigate interference. |
You may like...
Adex Optimized Adaptive Controllers and…
Juan M. Martin-Sanchez, Jose Rodellar
Hardcover
R3,856
Discovery Miles 38 560
Closing The Gap - The Fourth Industrial…
Tshilidzi Marwala
Paperback
Introduction to Microlithography
Larry F. Thompson, C. Grant Willson, …
Hardcover
R4,720
Discovery Miles 47 200
The Electric Telegraph - Was it Invented…
William Fothergill Cooke
Paperback
R304
Discovery Miles 3 040
|