![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering
This book traces the pedagogical evolution of technical communication in America as it grew out of Engineering English requirements from roughly the turn of the century to 1950. This study examines specific curricular patterns, texts, and writers on the subject of technical communication, while also tracing engineering educational patterns as they emerge from the proceedings of the society for the promotion of engineering education. Unique to the second edition of the book is a new preface by the recent past ATTW series editor, Jimmie Killingsworth, a new introduction by Elizabeth Tebeaux, and an epilogue by Katherine Staples. Writing in a Milieu of Utility concludes that technical writing, as we teach it today, likely found its roots in engineering composition pedagogy, when, at approximately the turn of the century, engineering educators recognized that writing about science and technology not only made sense in an academic milieu that emphasized utility, but that such writing could also contribute to the professional success of engineering students. Existing somewhat tenuously as engineering itself sought academic status, technical communication emerged ultimately as a re-conceptualized composition course, after early to mid twentieth century calls for English and engineering cooperation made traditional composition offerings less relevant. Academic writing on environmental communication proliferated in the 1990's. A few of us had been calling for such work and making initial investigations throughout the 1980's, but the momentum in the field built slowly. Spurred by coverage in the mass media, academic publishers finally caught the wave of interest. In this exciting new volume, the editors demonstrate more fully than ever before how environmental rhetoric and technical communication go hand in hand. The key link that they and their distinguished group of contributors have discovered is the ancient concern of communication scholars with public deliberation. Environmental issues present technical communicators with some of their greatest challenges, above all, how to make the highly specialized and inscrutably difficult technical information generated by environmental scientists and engineers usable in public decision making. The editors encourage us to accept the challenge of contributing to environmentally conscious decision making by integrating technical knowledge and human values. For technical communicators who accept the challenge of working toward solutions by opening access to crucial information and by engaging in critical thinking on ecological issues, the research and theory offered in this volume provide a strong foundation for future practice.
Analog and Power Wafer Level Chip Scale Packaging presents a state-of-art and in-depth overview in analog and power WLCSP design, material characterization, reliability and modeling. Recent advances in analog and power electronic WLCSP packaging are presented based on the development of analog technology and power device integration. The book covers in detail how advances in semiconductor content, analog and power advanced WLCSP design, assembly, materials and reliability have co-enabled significant advances in fan-in and fan-out with redistributed layer (RDL) of analog and power device capability during recent years. Since the analog and power electronic wafer level packaging is different from regular digital and memory IC package, this book will systematically introduce the typical analog and power electronic wafer level packaging design, assembly process, materials, reliability and failure analysis, and material selection. Along with new analog and power WLCSP development, the role of modeling is a key to assure successful package design. An overview of the analog and power WLCSP modeling and typical thermal, electrical and stress modeling methodologies is also presented in the book.
This book discusses a number of important topical technical and non-technical issues related to the global energy, environment and socio-economic developments for professionals and students directly and indirectly involved in the relevant fields. It shows how renewable energy offers solutions to mitigate energy demand and helps achieve a clean environment, and also addresses the lack of a clear vision in the development of technology and a policy to reach the mandatory global renewable energy targets to reduce greenhouse gas emissions and stimulate socio-economic development. The book is structured in such a way that it provides a consistent compilation of fundamental theories, a compendium of current research and development activities as well as new directions to overcome critical limitations; future technologies for power grids and their control, stability and reliability are also presented.
This book studies how autonomous aerial robots physically interact with the surrounding environment. Intended to promote the advancement of aerial physical interaction, it analyzes a particular class of aerial robots: tethered aerial vehicles. By examining specific systems, while still considering the challenges of the general problem, it will help readers acquire the knowledge and expertise needed for the subsequent development of more general methods applicable to aerial physical interaction. The formal analysis covers topics ranging from control, state estimation, and motion planning, to experimental validation. Addressing both theoretical and technical aspects, the book is intended for a broad academic and industrial readership, including undergraduate students, researchers and engineers. It can be used as a teaching reference, or as the basis for product development.
Starting from voice services with simple terminals, today a mobile device is nothing sort of a small PC in the form of smart-phones. The result has been a huge increase in data-services giving mobile communication access to critical aspects of human society / life. This has led to standardization of SAE/LTE (System Architecture Evolution / Long Term Evolution) by 3GPP and IEEE 802.16e / WiMAX. Together with penetration of mobile communications and new standardization come new security issues and thus the need for new security solutions. This book provides a fresh look at those security aspects, with main focus on the latest security developments of 3GPP SAE/LTE and WiMAX. SAE/LTE is also known as Evolved Packet System (EPS).The intended audience for this book is mobile network and device architects, designers, researchers and students. The goal of the authors, who have a combined experience of more than 25 years in mobile security standardization, architecture, research, and education, is to provide the book?s readers with a fresh and up-to-date look at the architecture and challenges of EPS and WiMAX security. This book includes 6 chapters, where the first 3 chapters are intended to be introductory ones, and the remaining 3 chapters provide more in-depth discussions. The book starts with Chapter 1 where we give a background of Next Generation Mobile Networks (NGMN) activity and requirements. Following explanation of NGMN, Chapter 2 provides an overview of security, telecommunication systems and their requirements. Chapter 3 provides some background on standardization. Chapter 4 discusses the EPS (or SAE/LTE) security architecture developed by 3GPP. In particular, this chapter covers the authentication and key agreement method for SAE/LTE together with newly defined key hierarchy. This chapter also addresses the challenging aspects of SAE/LTE interworking and mobility with UMTS together with the necessary key-exchange technologies. The focus of Chapter 5 is WiMAX (IEEE 802.16) security. Chapter 5 provides an in-depth discussion of the WiMAX security requirements, the authentication aspects of PKMv2, and the overall WiMAX network security aspects. In Chapter 6 we briefly cover security for (i) Home(evolved)NodeB (H(e)NB) is the Femto solution from 3GPP), (ii) Machine-to-Machine (M2M) security and (iii) Multimedia Broadcast and Multicast Service (MBMS) and Group Key Management.
This book provides insights into the First International Conference on Communication, Devices and Computing (ICCDC 2017), which was held in Haldia, India on November 2-3, 2017. It covers new ideas, applications and the experiences of research engineers, scientists, industrialists, scholars and students from around the globe. The proceedings highlight cutting-edge research on communication, electronic devices and computing, and address diverse areas such as 5G communication, spread spectrum systems, wireless sensor networks, signal processing for secure communication, error control coding, printed antennas, analysis of wireless networks, antenna array systems, analog and digital signal processing for communication systems, frequency selective surfaces, radar communication, and substrate integrated waveguide and microwave passive components, which are key to state-of-the-art innovations in communication technologies.
This book provides a basic understanding of spectroscopic ellipsometry, with a focus on characterization methods of a broad range of solar cell materials/devices, from traditional solar cell materials (Si, CuInGaSe2, and CdTe) to more advanced emerging materials (Cu2ZnSnSe4, organics, and hybrid perovskites), fulfilling a critical need in the photovoltaic community. The book describes optical constants of a variety of semiconductor light absorbers, transparent conductive oxides and metals that are vital for the interpretation of solar cell characteristics and device simulations. It is divided into four parts: fundamental principles of ellipsometry; characterization of solar cell materials/structures; ellipsometry applications including optical simulations of solar cell devices and online monitoring of film processing; and the optical constants of solar cell component layers.
This book proposes a general methodology to introduce Global Navigation Satellite System (GNSS) integrity, starting from a rigorous mathematical description of the problem. It highlights the major issues that designers need to resolve during the development of GNSS-based systems requiring a certain level of confidence on the position estimates. Although it follows a general approach, the final chapters focus on the application of GNSS integrity to rail transportation, as an example. By describing the main requirements in the context of train position function, one of which is the safe function of any train control system, it shows the critical issues associated with the concept of safe position integrity. In particular, one case study clarifies the key differences between the avionic domain and the railway domain related to the application of GNSS technologies, and identifies a number of railway-signaling hazards linked with the use of such technology. Furthermore, it describes various railway-signaling techniques to mitigate such hazards to prepare readers for the future evolution of train control systems, also based on the GNSS technology. This unique book offers a valuable reference guide for engineers and researchers in the fields of satellite navigation and rail transportation.
"Advances in Imaging and Electron Physics " merges two long-running
serials--"Advances in Electronics and Electron Physics" and
"Advances in Optical and Electron Microscopy."
This classroom-tested textbook describes the design and implementation of software for distributed real-time systems, using a bottom-up approach. The text addresses common challenges faced in software projects involving real-time systems, and presents a novel method for simply and effectively performing all of the software engineering steps. Each chapter opens with a discussion of the core concepts, together with a review of the relevant methods and available software. This is then followed with a description of the implementation of the concepts in a sample kernel, complete with executable code. Topics and features: introduces the fundamentals of real-time systems, including real-time architecture and distributed real-time systems; presents a focus on the real-time operating system, covering the concepts of task, memory, and input/output management; provides a detailed step-by-step construction of a real-time operating system kernel, which is then used to test various higher level implementations; describes periodic and aperiodic scheduling, resource management, and distributed scheduling; reviews the process of application design from high-level design methods to low-level details of design and implementation; surveys real-time programming languages and fault tolerance techniques; includes end-of-chapter review questions, extensive C code, numerous examples, and a case study implementing the methods in real-world applications; supplies additional material at an associated website. Requiring only a basic background in computer architecture and operating systems, this practically-oriented work is an invaluable study aid for senior undergraduate and graduate-level students of electrical and computer engineering, and computer science. The text will also serve as a useful general reference for researchers interested in real-time systems.
This thesis describes novel devices for the secure identification of objects or electronic systems. The identification relies on the the atomic-scale uniqueness of semiconductor devices by measuring a macroscopic quantum property of the system in question. Traditionally, objects and electronic systems have been securely identified by measuring specific characteristics: common examples include passwords, fingerprints used to identify a person or an electronic device, and holograms that can tag a given object to prove its authenticity. Unfortunately, modern technologies also make it possible to circumvent these everyday techniques. Variations in quantum properties are amplified by the existence of atomic-scale imperfections. As such, these devices are the hardest possible systems to clone. They also use the least resources and provide robust security. Hence they have tremendous potential significance as a means of reliably telling the good guys from the bad.
This book details some of the major developments in the implementation of compressive sensing in radio applications for electronic defense and warfare communication use. It provides a comprehensive background to the subject and at the same time describes some novel algorithms. It also investigates application value and performance-related parameters of compressive sensing in scenarios such as direction finding, spectrum monitoring, detection, and classification.
This book presents a technology to help speech-, hearing- and sight-impaired people. It explains how they will benefit from an enhancement in their ability to recognize and produce speech or to detect sounds in their surroundings. Additionally, it is considered how sound-based assistive technology might be applied to the areas of speech recognition, speech synthesis, environmental recognition, virtual reality and robots. The primary focus of this book is to provide an understanding of both the methodology and basic concepts of assistive technology rather than listing the variety of assistive devices developed. This book presents a number of different topics which are sufficiently independent from one another that the reader may begin at any chapter without lacking background information. Much of the research quoted in this book was conducted in the author's laboratories at Hokkaido University and University of Tokyo. This book offers the reader a better understanding of a number of unsolved problems that still persist in the field of sound-based assistive technology.
This book presents an efficient and robust method of modelling the magnetostatic properties of different technical elements, especially thin layers for magnetic sensors. The solutions presented utilise the principles of the method of moments. However, the principles have been developed both from the point of view of physical analyses as well as from the point of view of numerical optimisation. To enable cost-efficient use of the solutions for commercial applications in industry, the proposed method was implemented as a code optimised for use in the open-source OCTAVE environment. The scripts can be also used with MATLAB software, which is more user friendly, especially for less experienced users.
This book describes new and effective methodologies for modeling, analyzing and mitigating cell-internal signal electromigration in nanoCMOS, with significant circuit lifetime improvements and no impact on performance, area and power. The authors are the first to analyze and propose a solution for the electromigration effects inside logic cells of a circuit. They show in this book that an interconnect inside a cell can fail reducing considerably the circuit lifetime and they demonstrate a methodology to optimize the lifetime of circuits, by placing the output, Vdd and Vss pin of the cells in the less critical regions, where the electromigration effects are reduced. Readers will be enabled to apply this methodology only for the critical cells in the circuit, avoiding impact in the circuit delay, area and performance, thus increasing the lifetime of the circuit without loss in other characteristics.
When trying to solve a complex, seemingly unsolvable problem, electrical engineers sometimes just need to start at the very beginning of the problem. To arrive at a solution, they have to go back to the basics and examine the mathematical rules, laws, and formulas that are at the root of every electrical engineering problem. This is why engineers need the Mathematical Handbook for Electrical Engineers. Written by electrical engineers, specifically for electrical engineers, this valuable resource presents the most common mathematical techniques used for problem solving and computer-aided analysis. It concisely, clearly, and easily explains the essential mathematics engineers use everyday on the job, and also serves as a time-saving reference for students. Examples are taken from a wide variety of electrical engineering disciplines, including circuits, devices and systems, antennas and propagation, waveforms and signal processing, and stochastic radio engineering.
This book describes a new control design technique called Coefficient Diagram Method (CDM), whereby practical control engineers without deep control theories and mathematics background can design a good controller for their specific plants. In addition, control experts can solve some complicated design problems. Since the CDM was first introduced in 1998, it reveals from the literature that CDM has provided successful controller designs for a variety of practical control problems. In the last two decades, a great deal of research has been done on CDM, while a growing number of researchers want to learn and utilize the method. However, there has been no textbook to learn it systematically so far. This book is motivated by such a need. It is also suitable as a textbook or reference book for master programs in control engineering.
This book presents state-of-the-art research advances in the field of biologically inspired cooperative control theories and their applications. It describes various biologically inspired cooperative control and optimization approaches and highlights real-world examples in complex industrial processes. Multidisciplinary in nature and closely integrating theory and practice, the book will be of interest to all university researchers, control engineers and graduate students in intelligent systems and control who wish to learn the core principles, methods, algorithms, and applications.
This book deals with a combination of two main problems for the first time. They are saturation on control and on the rate (or increment) of the control, and the solution of unsymmetrical saturation on the control by LMIs. It treats linear systems in state space form, in both the continuous- and discrete-time domains. Necessary and sufficient conditions are derived for autonomous linear systems with constrained state increment or rate, such that the system evolves respecting incremental or rate constraints if any. A pole assignment technique is then used to solve the problem, giving stabilizing state feedback controllers that respect non-symmetrical constraints on control alone or on both control and its increment or rate. Illustrative examples show the application of these methods on academic examples or on such real plant models as the double integrator system. This problem is then extended to various others including: systems with constraints and perturbations; singular systems with constrained control; systems with unsymmetrical saturations; saturated systems with delay, and 2-D systems with saturations. The solutions obtained are of two types: necessary and sufficient conditions solved with linear programming techniques; and sufficient conditions under LMIs. A new approach extends existing techniques for dealing with symmetrical saturations to take direct account of unsymmetrical saturations into account with LMIs. This tool enables the authors to obtain new results on continuous- and discrete-time systems. The book uses illustrative examples and figures and provides many comparisons with existing results. Systems theoreticians interested in multidimensional systems and practitioners working with saturated and constrained controllers will find the research and background presented in Saturated Control of Linear Systems to be of considerable interest in helping them overcome problems with their plant and in stimulating further research.
The main purpose of this book is to provide a comprehensive treatment of the materials aspects of group-IV, III-V and II-VI semiconductor alloys used in various electronic and optoelectronic devices. The topics covered in this book include the structural, thermal, mechanical, lattice vibronic, electronic, optical and carrier transport properties of such semiconductor alloys. The book reviews not only commonly known alloys (SiGe, AlGaAs, GaInPAs, and ZnCdTe) but also new alloys, such as dilute-carbon alloys (CSiGe, CSiSn, etc.), III-N alloys, dilute-nitride alloys (GaNAs and GaInNAs) and Mg- or Be-based II-VI semiconductor alloys. Finally there is an extensive bibliography included for those who wish to find additional information as well as tabulated values and graphical information on the properties of semiconductor alloys.
This book describes RTL design using Verilog, synthesis and timing closure for System On Chip (SOC) design blocks. It covers the complex RTL design scenarios and challenges for SOC designs and provides practical information on performance improvements in SOC, as well as Application Specific Integrated Circuit (ASIC) designs. Prototyping using modern high density Field Programmable Gate Arrays (FPGAs) is discussed in this book with the practical examples and case studies. The book discusses SOC design, performance improvement techniques, testing and system level verification, while also describing the modern Intel FPGA/XILINX FPGA architectures and their use in SOC prototyping. Further, the book covers the Synopsys Design Compiler (DC) and Prime Time (PT) commands, and how they can be used to optimize complex ASIC/SOC designs. The contents of this book will be useful to students and professionals alike.
This book provides information regarding spectrum sharing between wireless systems, motivated by emerging new technologies. Readers will benefit from information about how to conduct research on the interference mitigation between IMT-Advanced and FSS. The author presents a deterministic analysis for interference to noise ratio (I/N), adjacent channel interference ratio (ACIR), field strength, and path loss propagation, in order to determine the separation distances in the co-channel interference (CCI) and adjacent channel Interference (ACI) scenarios. An analytical model is discussed, for the shielding mitigation technique based on the deterministic analysis of the propagation model. The shielding technique has been developed based on test bed measurements for evaluating the attenuation of the proposed materials. Matlab (TM) and Transfinite Visualyse Pro (TM) have been used as simulation tools for the verification of the obtained results, whereas the IMT-Advanced parameters have been represented by Worldwide Interoperability for Microwave Access (WiMAX) 802.16e.
This book presents recent research on the hybridization of intelligent methods, which refers to combining methods to solve complex problems. It discusses hybrid approaches covering different areas of intelligent methods and technologies, such as neural networks, swarm intelligence, machine learning, reinforcement learning, deep learning, agent-based approaches, knowledge-based system and image processing. The book includes extended and revised versions of invited papers presented at the 6th International Workshop on Combinations of Intelligent Methods and Applications (CIMA 2016), held in The Hague, Holland, in August 2016. The book is intended for researchers and practitioners from academia and industry interested in using hybrid methods for solving complex problems. |
![]() ![]() You may like...
Edinburgh Castle for Kids - Fun Facts…
Moreno Chiacchiera
Paperback
![]()
Arguments about Arguments - Systematic…
Maurice A. Finocchiaro
Hardcover
Big Data in Small Business - Data-Driven…
Carsten Lund Pedersen, Adam Lindgreen, …
Hardcover
R3,356
Discovery Miles 33 560
Prevention and the Limits of the…
Andrew Ashworth, Lucia Zedner, …
Hardcover
R4,853
Discovery Miles 48 530
|