![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of fluids > Flow, turbulence, rheology
Nanofluids are an emerging class of heat transfer fluids that are engineered by dispersing nanoparticles in conventional fluids. They represent a promising, multidisciplinary field that has evolved over the past two decades to provide enhanced thermal features, as well as manifold applications in thermal management, energy, transportation, MEMs and biomedical fields. Fundamentals and Transport Properties of Nanofluids addresses a broad range of fundamental and applied research on nanofluids, from their preparation, stability, and thermal and rheological properties to performance characterization and advanced applications. It covers combined theoretical, experimental and numerical research to elucidate underlying mechanisms of thermal transport in nanofluids. Edited and contributed to by leading academics in thermofluids and allied fields, this book is a must have for those working in chemical, materials and mechanical engineering, nanoscience, soft matter physics and chemistry.
The pursuit of the golden balance between oversimplification and overload with theory has always been the primary goal of every author of book on rheology. Rheology. Concepts, Methods, and Applications, 2nd Ed. is a tool for chemists and chemical engineers to solve many practical problems. They have to learn what to measure, how to measure, and what to do with the data. But, the learning process should not take users away from their major goals, such as manufacturing quality products, developing new materials, analysis of material durability. In the book various aspects of theoretical rheology as well as methods of measurement and raw data treatment and how to use rheological methods in different groups of products are discusses. The authors share their experiences of many years of experimental studies and teaching to show use of rheology in studies of materials. They and were very meticulous in giving historical background of contributors to rheology as a science and as the method of solving many practical problems. This book is very useful as a teaching tool in universities and
colleges because it is consistent with programs of rheology
courses. Practicality of this book will prepare students for
typical tasks in industry. Equally it serves the industry and
accomplished rheologists because it contains expert advice of two
very famous and accomplished scientists and teachers who know
discoveries first-hand because they may have taken part in some of
them.
This book gives the basic analytical framework for the description of turbulent flows and discusses various types encountered by civil engineers involved in hydraulic analysis and design, as well as environmental engineers. It also presents a detailed exposition of the various dimensions of turbulent flow. The book is extremely useful for practising engineers, particularly in the field of hydraulic analysis and design, building dynamics and environmental engineering.
Fluid turbulence is often referred to as `the unsolved problem of classical physics'. Yet, paradoxically, its mathematical description resembles quantum field theory. The present book addresses the idealised problem posed by homogeneous, isotropic turbulence, in order to concentrate on the fundamental aspects of the general problem. It is written from the perspective of a theoretical physicist, but is designed to be accessible to all researchers in turbulence, both theoretical and experimental, and from all disciplines. The book is in three parts, and begins with a very simple overview of the basic statistical closure problem, along with a summary of current theoretical approaches. This is followed by a precise formulation of the statistical problem, along with a complete set of mathematical tools (as needed in the rest of the book), and a summary of the generally accepted phenomenology of the subject. Part 2 deals with current issues in phenomenology, including the role of Galilean invariance, the physics of energy transfer, and the fundamental problems inherent in numerical simulation. Part 3 deals with renormalization methods, with an emphasis on the taxonomy of the subject, rather than on lengthy mathematical derivations. The book concludes with some discussion of current lines of research and is supplemented by three appendices containing detailed mathematical treatments of the effect of isotropy on correlations, the properties of Gaussian distributions, and the evaluation of coefficients in statistical theories.
The areas of suspension mechanics, stability and computational rheology have exploded in scope and substance in the last decade. The present book is one of the first of a comprehensive nature to treat these topics in detail. The aim of the authors has been to highlight the major discoveries and to present a number of them in sufficient breadth and depth so that the novice can learn from the examples chosen, and the expert can use them as a reference when necessary. The first two chapters, grouped under the category "General Principles," deal with the kinematics of continuous media and the balance laws of mechanics, including the existence of the stress tensor and extensions of the laws of vector analysis to domains bounded by fractal curves or surfaces. The third and fourth chapters, under the heading "Constitutive Modelling," present the tools necessary to formulate constitutive equations from the continuum or the microstructural approach. The last three chapters, under the caption "Analytical and Numerical Techniques," contain most of the important results in the domain of the fluid mechanics of viscoelasticity, and form the core of the book. A number of topics of interest have not yet been developed to a theoretical level from which applications can be made in a routine manner. However, the authors have included these topics to make the reader aware of the state of affairs so that research into these matters can be carried out. For example, the sections which deal with domains bounded by fractal curves or surfaces show that the existence of a stress tensor in such regions is still open to question. Similarly, the constitutive modelling of suspensions, especially at high volume concentrations, with the corresponding particle migration from high to low shear regions is still very sketchy.
This book is aimed at scientists and practicing engineers who are currently exploring or would like to explore the complexity of fabrication processes of polymer composites. It deals with the mechanics and modeling aspects of discontinuous and continuous fiber composites and familarizes the engineer with the critical and fundamental issues of material processing and transport phenomena in polymeric composites and their applications in modeling and simulating specific composite manufacturing processes. Divided into three parts, Part A deals with the deformation science or rheology of these filled materials. It clearly shows the need to characterize their flow behavior before one can draw any conclusions about its processibility during manufacturing. Part B focuses on development of constitutive equations to describe the flow and deformation behavior of such materials under external processing conditions. Part C discusses the mathematical models for selected composite processes and their implementation into a computer simulation to analyze the process behavior. The processes represented in Part C cover a cross-section of important manufacturing processes and maintain a balance between processes that use short fibers and continuous fibrous materials.
This book presents a comprehensive overview of microrheology, emphasizing the underlying theory, practical aspects of its implementation, and current applications to rheological studies in academic and industrial laboratories. The field of microrheology continues to evolve rapidly, and applications are expanding at an accelerating pace. Readers will learn about the key methods and techniques, including important considerations to be made with respect to the materials most amenable to microrheological characterization and pitfalls to avoid in measurements and analysis. Microrheological measurements can be as straightforward as video microscopy recordings of colloidal particle Brownian motion; these simple experiments can yield rich rheological information. Microrheology covers topics ranging from active microrheology using laser or magnetic tweezers to passive microrheology, such as multiple particle tracking and tracer particle microrheology with diffusing wave spectroscopy. Overall, this introduction to microrheology informs those seeking to incorporate these methods into their own research, or simply survey and understand the growing body of microrheology literature. Many sources of archival literature are consolidated into an accessible volume for rheologist and non-specialist alike. The small sample sizes of many microrheology experiments have made it an important method for studying emerging and scarce biological materials, making this characterization method suitable for application in a variety of fields.
Flow-induced vibrations and noise continue to cause problems in a wide range of engineering applications ranging from civil engineering and marine structures to power generation and chemical processing. These proceedings bring together more than a hundred papers dealing with a variety of topics relating to flow-induced vibration and noise. The contents of this work constitute a mix of investigations by those working on the mechanisms of vibration and means of their alleviation, and studies by those in industry who draw on the present state of knowledge of these mechanisms to avoid or solve flow-induced vibration and noise problems in industrial applications.
Presenting current knowledge in the field of mudflows, this book
includes both rheological mudflow aspects, and information on
mudflow characteristics in open channels. It includes sections on:
Designed for engineers, this work considers flow-induced vibrations. It covers topics such as body oscillators; fluid loading and response of body oscillators; fluid oscillators; vibrations due to extraneously-induced excitation; and vibrations due to instability-induced excitation.
A review of open channel turbulence, focusing especially on certain features stemming from the presence of the free surface and the bed of a river. Part one presents the statistical theory of turbulence; Part two addresses the coherent structures in open-channel flows and boundary layers.
This book provides an introduction to the subject of turbulence modelling in a form easy to understand for anybody with a basic background in fluid mechanics, and it summarizes the present state of the art. Individual models are described and examined for the merits and demerits which range from the simple Prandtl mixing length theory to complex second order closure schemes.
The purpose of this text is to benefit users, manufacturers and engineers by drawing together an overall view of the technology. It attempts to give the reader an appreciation of the extent to which slurry transport is presently employed, the theoretical basis for pipeline design and the practicalities of design and new developments.
Handbook of Rheological Additives covers how these additives are commonly applied in a wide range of industries, providing readers with information on over 300 organic and inorganic additives. This information is presented in individual tables for each product, whether commercial or generic. Data is divided into General Information, Physical Properties, Health and Safety, Ecological Properties, Use and Performance. Sections cover their state, odor, color, bulk density, density, specific gravity, relative density, boiling point, melting point, pour point, decomposition temperature, glass transition temperature, refractive index, vapor pressure, vapor density, volume resistivity, relative permittivity, ash content, pH, viscosity, rheological behavior, and more. Other notations include updates on NFPA classification, HMIS classification, OSHA hazard class, UN Risk phrases, UN Safety phrases, UN/NA class, DOT class, ADR/RIC class, ICAO/IATA class, IMDG class, packaging group, shipping name, food approvals, autoignition temperature, self-accelerating decomposition temperature, flash point, TLV ACGIH, NIOSH and OSHA, maximum exposure concentration IDLH, animal testing oral-rat, rabbit-dermal, mouse-oral, guinea pig-dermal, rat-dermal, rat-inhalation, mouse-inhalation, ingestion and skin and eye irritation.
The subject of compressible flow or gas dynamics deals with the thermo-fluid dynamic problems of gases and vapours, hence it is now an important part of both undergraduate and postgraduate curricula. Compressible Flow covers this subject in fourteen well organised chapters in a lucid style. A large mass of theoretical material and equations has been supported by a number of figures and graphical depictions. Moreover, the revised edition has an additional chapter on miscellaneous problems in compressible flow (gas dynamics)which has been designed to support the turorials, practice exercises and examinations. Problems have been specially chosen for students and engineers in the areas of aerospace, chemical, gas and mechanical engineering. Also the author's broad teaching experience is reflected in the clarity, and systematic and logical presentation of the book.
The subject of jamming and rheology is a broad and interdisciplinary one that is generating increasing interest. This book deals with one of the oldest unsolved problems in condensed matter physics - that of the nature of glass transition in supercooled liquids. Jamming and Rheology is a collection of reprinted articles from several fields, ranging from structural glasses to foams and granular materials. Glassy relaxation and constrained dynamics (jamming) occur at all scales, from microscopic to macroscopic - in the glass transition of supercooled liquids, in fluids confined to thin films, in the structural arrest of particles such as granular materials, and in foams which must be driven by an applied stress in order to flow. Because jamming occurs at the transition between where a flow occurs and where motion stops, it is hoped that there may be a universal feature that describes this transition in all systems. This volume shows that the systems described above share many common phenomenological features, and covers work done by a wide range of scientists and technologists working in areas from physics to chemistry to chemical and mechanical engineering.
This book is intended for self-study or as a companion of lectures delivered to post-graduate students on the subject of the computational prediction of complex turbulent flows. There are several books in the extensive literature on turbulence that deal, in statistical terms, with the phenomenon itself, as well its many manifestations in the context of fluid dynamics. Statistical Turbulence Modelling for Fluid Dynamics - Demystified differs from these and focuses on the physical interpretation of a broad range of mathematical models used to represent the time-averaged effects of turbulence in computational prediction schemes for fluid flow and related transport processes in engineering and the natural environment. It dispenses with complex mathematical manipulations and instead gives physical and phenomenological explanations. This approach allows students to gain a 'feel' for the physical fabric represented by the mathematical structure that describes the effects of turbulence and the models embedded in most of the software currently used in practical fluid-flow predictions, thus counteracting the ill-informed black-box approach to turbulence modelling. This is done by taking readers through the physical arguments underpinning exact concepts, the rationale of approximations of processes that cannot be retained in their exact form, and essential calibration steps to which the resulting models are subjected by reference to theoretically established behaviour of, and experimental data for, key canonical flows.
In this book we study the degree theory and some of its applications in analysis. It focuses on the recent developments of this theory for Sobolev functions, which distinguishes this book from the currently available literature. We begin with a thorough study of topological degree for continuous functions. The contents of the book include: degree theory for continuous functions, the multiplication theorem, Hopf`s theorem, Brower`s fixed point theorem, odd mappings, Jordan`s separation theorem. Following a brief review of measure theory and Sobolev functions and study local invertibility of Sobolev functions. These results are put to use in the study variational principles in nonlinear elasticity. The Leray-Schauder degree in infinite dimensional spaces is exploited to obtain fixed point theorems. We end the book by illustrating several applications of the degree in the theories of ordinary differential equations and partial differential equations.
Many diverse materials, from man-made plastics to slurry, behave in ways that cannot be predicted using straightforward 'classical' equations. This book provides a guide, with examples, for those who wish to make predictions about the mechanical and thermal behaviour of non-Newtonian materials in engineering and processing technology. There is an emphasis on the practical solution of problems using computer methods, and on the correlation between theory and experimental work.
A study in the development of flow adaptive numerical schemes in computational hydraulics directed to enhancing modelling capabilities. Examples covered include additional flow resistance due to flexible vegetation; one-dimensional supercritical flow; and flow in networks of channels.
Comprehensive, unique coverage of turbulent flow including modern prediction and measurement Turbulent Flow presents the essential physical and analytical background that enables readers to make informed decisions when choosing the best method for the study and prediction of turbulent flows. Critical focus is given to experimental and numerical methods as well as what these methods have revealed about turbulent motion. Coverage includes an introduction to turbulence theory, the fundamental equations of turbulent flow and their meaning, the techniques used in physical experiments and computer simulations, a review of the progress made in understanding the properties of turbulence, turbulence closures and their applications, and large eddy simulation methods. Cutting-edge material includes:
Turbulent Flow is an essential book for students and an invaluable reference for mechanical and aerospace engineers, physicists and mathematicians in related disciplines, and engineers and scientists in such fields as chemical, biological, and ocean engineering.
The first of its kind in the field, this title examines the use of
modern, shock-capturing finite volume numerical methods, in the
solution of partial differential equations associated with
free-surface flows, which satisfy the shallow-water type assumption
(including shallow water flows, dense gases and mixtures of
materials as special samples).
A discussion of the fundamental aspects of fluid flow phenomena in a jointed rock mass, as well as various geological (structural) features and their influence on flow deformation characteristics. Various types of laboratory triaxial apparatus used in testing are also highlighted. |
![]() ![]() You may like...
Introduction to Innovation and…
Ian Ernest Cooke, Paul Mayes
Hardcover
R2,407
Discovery Miles 24 070
|