![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of fluids > Flow, turbulence, rheology
An analysis of polymer and composite rheology. This second edition covers flow properties of thermoplastic and thermoset polymers, and general principles and applications of all phases of polymer rheology, with new chapters on the rheology of particulate and fibre composites. It also includes new and expanded detail on polymer blends and emulsions, foams, reacting systems, and flow through porous media as well as composite processing operations.
Adopts a completely original approach to the study of processes of
mass transfer. In contrast to the usual approach, based on the
concept of continuum media and the theory of heat and mass
transfer, the topic is considered from a new viewpoint, taking into
account the heterogeneous dispersal state of porous bodies. The
author bases his discussion on the theory of surface forces and
microhydrodynamic analysis of the processes of mass transport of
gases, liquids and vapors, providing the reader with a systematic
account of liquid/solid and gas/solid interfaces.
With the appearance and fast evolution of high performance
materials, mechanical, chemical and process engineers cannot
perform effectively without fluid processing knowledge. The purpose
of this book is to explore the systematic application of basic
engineering principles to fluid flows that may occur in fluid
processing and related activities.
The most widely used shape in engineering, the circular cylinder, provides great challenges to researchers as well as mathematical and computer modellers. This book offers an authoritative compilation of experimental data, theoretical models, and computer simulations which will provide the reader with a comprehensive survey of research work on the phenomenon of flow around circular cylinders. Researchers and professionals in the field will find it an invaluable source for ideas and solutions to design and theoretical problems encountered in their work.
Techniques and Topics in Flow Measurement covers the applications
and techniques of flow measurement. This definitive book provides
guidelines for choosing appropriate techniques and assuring valid
measurements as well as describes methods for treatment of
calibration data in fluid flow under various conditions. The book
also covers three systems of units: the SI system, the English
Absolute Dimensional system, and the English Engineering system.
Commonly used - and often misused - variables such as force,
weight, and pressure are defined, and the relationships between the
systems for these common variables are summarized.
This book presents a comprehensive overview of microrheology, emphasizing the underlying theory, practical aspects of its implementation, and current applications to rheological studies in academic and industrial laboratories. The field of microrheology continues to evolve rapidly, and applications are expanding at an accelerating pace. Readers will learn about the key methods and techniques, including important considerations to be made with respect to the materials most amenable to microrheological characterization and pitfalls to avoid in measurements and analysis. Microrheological measurements can be as straightforward as video microscopy recordings of colloidal particle Brownian motion; these simple experiments can yield rich rheological information. Microrheology covers topics ranging from active microrheology using laser or magnetic tweezers to passive microrheology, such as multiple particle tracking and tracer particle microrheology with diffusing wave spectroscopy. Overall, this introduction to microrheology informs those seeking to incorporate these methods into their own research, or simply survey and understand the growing body of microrheology literature. Many sources of archival literature are consolidated into an accessible volume for rheologist and non-specialist alike. The small sample sizes of many microrheology experiments have made it an important method for studying emerging and scarce biological materials, making this characterization method suitable for application in a variety of fields.
This book provides students and researchers in fluid engineering with an up-to-date overview of turbulent flow research in the areas of simulation and modeling. A key element of the book is the systematic, rational development of turbulence closure models and related aspects of modern turbulent flow theory and prediction. Starting with a review of the spectral dynamics of homogenous and inhomogeneous turbulent flows, succeeding chapters deal with numerical simulation techniques, renormalization group methods and turbulent closure modeling. Each chapter is authored by recognized leaders in their respective fields, and each provides a thorough and cohesive treatment of the subject.
The sixth ERCOFTAC Workshop on 'Direct and Large-Eddy Simulation' (DLES-6) was held at the University of Poitiers from September 12-14, 2005. Following the tradition of previous workshops in the DLES-series, this edition has reflected the state-of-the-art of numerical simulation of transitional and turbulent flows and provided an active forum for discussion of recent developments in simulation techniques and understanding of flow physics.
Modelling transport and mixing by turbulence in complex flows are huge challenges for computational fluid dynamics (CFD). This highly readable book introduces readers to modelling levels that respect the physical complexity of turbulent flows. It examines the hierarchy of Reynolds-averaged Navier-Stokes (RANS) closures in various situations ranging from fundamental flows to three-dimensional industrial and environmental applications. The general second-moment closure is simplified to linear eddy-viscosity models, demonstrating how to assess the applicability of simpler schemes and the conditions under which they give satisfactory predictions. The principal changes for the second edition reflect the impact of computing power: a new chapter devoted to unsteady RANS and another on how large-eddy simulation, LES, and RANS strategies can be effectively combined for particular applications. This book will remain the standard for those in industry and academia seeking expert guidance on the modelling options available, and for graduate students in physics, applied mathematics and engineering entering the world of turbulent flow CFD.
The role of high performance computing in current research on transitional and turbulent flows is undoubtedly very important. This review volume provides a good platform for leading experts and researchers in various fields of fluid mechanics dealing with transitional and turbulent flows to synergistically exchange ideas and present the state of the art in the fields.Contributed by eminent researchers, the book chapters feature keynote lectures, panel discussions and the best invited contributed papers.
Since its discovery in early 1900, turbulence has been an interesting and complex area of study. Written by international experts, Air Pollution and Turbulence: Modeling and Applications presents advanced techniques for modeling turbulence, with a special focus on air pollution applications, including pollutant dispersion and inverse problems. The book s foreword was written by specialists in the field, including the Professor Sergej Zilitinkevich. Offering innovative atmospheric mathematical modeling methods, which can also be applied to other disciplines, the book includes:
The book provides a solid theoretical understanding of turbulence and includes cases studies that illustrate subjects related to environmental sciences and environmental modeling. It reflects and summarizes recent developments in key areas of modeling atmospheric turbulence and air pollution. It pulls together information on techniques and methods used on turbulence, air pollution, and applications. While these topics are often covered separately, this book s combined coverage of all three areas sets it apart.
Momentum, heat and mass transport phenomena can be found everywhere in nature. A solid understanding of the principles of these processes is essential for chemical and process engineers. The second edition of Transport Phenomena builds on the foundation of the first edition which presented fundamental knowledge and practical application of momentum, heat and mass transfer processes in a form useful to engineers. This revised edition includes revisions of the original text in addition to new applications providing a thoroughly updated edition. This updated text includes;
This book is collection of papers on the main topics of cardiovascular modelling and measurements. Some of the results show how to calculate many non-linear aspects of fluid flow and the turbulence in the arteries and the bifurcation junctions of the cardiovascular system. There are three themes to the papers: first, the fundamental concepts of fluid dynamics and turbulence in the system; the second theme is the flow modelling in arteries and bypass graft; the third section is about haemorheology and haemodynamics and explores the factors that play a role in coronary circulation using data from patients with ischaemic heart disease and acute myocardial infarction.
This comprehensive guide offers authoritative answers on flow measurement from dozens of leading experts. Fully illustrated with diagrams, tables, and formulas, Flow Measurement covers virtually every type of flow meter in use today, including those for heat exchangers and gaseous fuels, and laminar, magnetic and mass flow meters. Valuable information on applications and selection criteria.
This book covers in one volume, both the theoretical development, as well as appropriate numerical solutions, for all aspects of transport phenomena. It contains a basic introduction to many aspects of fluid mechanics, heat transfer and mass transfer, and the conservation equations for mass, energy and momentum are discussed with reference to engineering applications. Heat transfer by conduction, radiation, natural and forced convection is studied, as well as mass transfer and incompressible fluid mechanics.
The book presents an integrated planning concept for heat flows in production systems comprising various short term and long term related models. Detailed explanations about the modeling and implementation of all relevant system elements such as generic and specific machines types, technical building services (TBS), production planning and control aspects, heat storage units and (waste) heat designs follow. Due to resulting amounts of data, the concept foresees system level appropriate indicators and visualizations for a facilitatedevaluation of the model results. An application procedure embeds and describes all models as well.Three exemplary application cases demonstrate the applicability, including the manufacturing of shafts for automotive transmissions, a cooling water system and an academic learning environment.
This comprehensive two volume reference work is devoted to the
important details regarding the application of the finite element
method to incompressible flows, addressing the theoretical
background and the detailed development of appropriate numerical
methods applied to their solution. Volume One provides extensive
coverage of the prototypical fluid mechanics equation: the
advection-diffusion equation. In addition, for both this equation
and the equations of principal interest - the Navier-Stokes
equations - (covered in detail in Volume Two), a discussion of both
the continuous and discrete equations is presented. Also addressed
are explanations of how to properly march the time-dependent
equations using smart implicit methods. Boundary and initial
conditions, so important in applications, are thoroughly described
and discussed, including well-posedness. The important role played
by the pressure, so confusing in the past, is carefully explained.
Together, this two volume work explains and emphasizes consistency
in six areas:
This is a modern presentation of the fundamentals of continuum mechanics as applied to the analysis of the plastic flow in metal forming. Metal forming plasticity is an advanced subject of intensive current research, relevant to both materials science and mechanical engineering. It is used for the analysis and modelling of fabrication processes such as forging, extrusion, rolling, and wire and tube drawing. The fundamentals of flow mechanics are explained here before they are applied in a variety of machine-tool design engineering situations. These fundamentals form the basis of all engineering analyses of the plastic flow in metal forming. Worked examples show the variety of metal forming situations, and approximately 200 end-of-chapter problems are also included.
Drag reduction is a field of study in many engineering disciplines, and its aim is to reduce the fluid-mechanical forces exerted in an object in order to improve its mechanical and/or fuel efficiency. This book provides a guide to the current state-of-the-art in this area of engineering.
This immensely practical guide to PIV provides a condensed, yet exhaustive guide to most of the information needed for experiments employing the technique. This second edition has updated chapters on the principles and extra information on microscopic, high-speed and three component measurements as well as a description of advanced evaluation techniques. What's more, the huge increase in the range of possible applications has been taken into account as the chapter describing these applications of the PIV technique has been expanded.
"Analysis and Modelling of Non-Steady Flow in Pipe and Channel Networks" deals with flows in pipes and channel networks from the standpoints of hydraulics and modelling techniques and methods. These engineering problems occur in the course of the design and construction of hydroenergy plants, water-supply and other systems. In this book, the author presents his experience in solving these problems from the early 1970s to the present day. During this period new methods of solving hydraulic problems have evolved, due to the development of computers and numerical methods. This book is accompanied by a website which hosts the author's software package, "Simpip ""("an abbreviation of "sim""ulation of pipe flow) "for solving non-steady pipe flow using the finite element method. The program also covers flows in channels. The book presents the numerical core of the SimpipCore program (written in Fortran). Key features: Presents the theory and practice of modelling different flows in hydraulic networksTakes a systematic approach and addresses the topic from the fundamentalsPresents numerical solutions based on finite element analysisAccompanied by a website hosting supporting material including the SimpipCore project as a standalone program "Analysis and Modelling of Non-Steady Flow in Pipe and Channel Networks" is an ideal reference book for engineers, practitioners and graduate students across engineering disciplines.
The "Turbulence and Interactions 2006" (TI2006) conference was held on the island of Porquerolles, France, May 29-June 2, 2006. The scientific sponsors of the conference were * Association Francaise de Mecanique, * CD-adapco, * DGA * Ecole Polytechnique Federale de Lausanne (EPFL), * ERCOFTAC : European Research Community on Flow, Turbulence and Combustion, * FLUENT, * The French Ministery of Foreign Affairs, * Laboratoire de Modelisation en Mecanique, Paris 6, * ONERA. The conference was a unique event. Never before have so many organisations concerned with turbulence works come together in one conference. As the title "Turbulence and Interactions" anticipated, the workshop was not run with parallel sessions but instead of one united gathering where people had strong interactions and discussions. Many of the 85 or so attendants were veterans of previous ERCOFTAC conferences. Some young researchers attended their very first int- national meeting. The organisers were fortunate in obtaining the presence of the following - vited speakers: N. Adams (TUM, Germany), C. Cambon (ECL, France), J.-P. Dussauge (Polytech Marseille, France), D.A. Gosman (Imperial College, UK), Y. Kaneda (Nagoya University, Japan), O. Simonin (IMFT, France), G. Tryggvason (WPI, USA), D. Veynante (ECP, France), F. Waleffe (University of Wisconsin, USA), Y.K. Zhou (University of California, USA). The topics covered by the 59 papers ranged from experimental results through theory to computations. The papers of the conference went through the usual - viewing process for two special issues of international journals : Computers and Fluids, and Flow, Turbulence and Combustion.
Part textbook, part exploratory work, this book aims to raise the awareness of students, physicists, and engineers in turbulence on the modeling of gravitationally induced turbulent mixing flows as produced, for instance, by Rayleigh-Taylor instabilities. The discussion is centered on the differences between single-fluid and two-fluid approaches, and it is illustrated with a 0D analysis of two specific elementary models in common use. Important deviations are shown to appear on many features, among others the prominence of directed energy, the simultaneous restitution of test cases, the responses to variable acceleration and shocks, and the behavior of various length scales.
The workshop "Dynamics and Structure of vortices" was held in the Clo tre des Penitents in Rouen, France on the 27th and 28th April,1999. Our understanding of the structure and dynamics of vortices has improved considerably during the last few years, mainly thanks to progress in turbulence research, where these structures have been shown to play an important role. The aim of this French workshop was to gather theoreticians, computational researchers and experimentalists to illuminate various aspects of this sub ject. We wanted on the one hand to present the state of art, and on the other hand to collect the most recent contributions on the structure and dynamics of vortices. This volume presents 22 articles corresponding to seminars and presen- tions given during this workshop. The ?rst three articles correspond to general presentations: A. Babiano presents the two-dimensional aspects of vortices; S. Huberson and O. Daube give a review on numerical methods applied to vortical ?ow; and M. Rossi presents theories of vortex instability. The following 19 papers correspond to presentations given by the parti- pants on their research subjects related to experimental, numerical or theore- cal aspects of vortices. Many of these studies are tied to related ?elds, such as turbulence, aerodynamics, wakes, geophysics, mixing, particles dynamics ... The scienti?c committee of the workshop, A. Babiano, A. Maurel, P. Pet- jeans and M. Rossi thank the CNRS for ?nancial support through the Groupe de Recherche "Turbulence" and the Groupe de Recherche "M ecanique fon- mentale des ?uides geophysiques et astrophysiques,"and also the Association Fran, caise de M ecanique." |
![]() ![]() You may like...
Modern Requirements for Noise Immunity…
Oleg Ivanovich Zavalishin, Dmitry Alexandrovich Zatuchny, …
Hardcover
R3,969
Discovery Miles 39 690
Signal Processing of Airborne Radar…
Vereshchagin A.V., Zatuchny D.A., …
Hardcover
R3,809
Discovery Miles 38 090
Natural Headland Sand Bypassing…
Mohd Shahrizal Bin Ab Razak
Hardcover
R3,638
Discovery Miles 36 380
Numerical Analysis of Dams - Proceedings…
Gabriella Bolzon, Donatella Sterpi, …
Hardcover
R6,090
Discovery Miles 60 900
Multibiometric Watermarking with…
Rohit M. Thanki, Vedvyas J. Dwivedi, …
Hardcover
R1,613
Discovery Miles 16 130
|