![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of fluids > Flow, turbulence, rheology
In this book we will introduce the modeling process of turbulent particulate flows which are encountered in many engineering and environmental applications. These types of flows usually also involve heat and mass transfer and turbulence adds another dimension to the complexity of the problem and hence a rigorous mathematical treatment is usually required. This required mathematical background makes the learning curve for new research students and practicing engineers extremely steep. Therefore modeling process for new or existing problems is extremely slow and is usually restricted to minor improvements to the to the available models. In this book we try to gather the required mathematical knowledge and introduce them more intuitively. Many numerical simulations of basic processes and equation will be given to provide the reader with a physical understanding of the different terms in the underlying equations. We will start the modeling process from a mesoscopic level which deals with the system of an intermediate length scale between the size of the atoms or molecules and the bulk of the material. This provides a unique opportunity for the reader to intuitively add different phenomena to their models and equipped with the necessary mathematical tools derive the final models for their problems.
This book deals with the simulation of the incompressible Navier-Stokes equations for laminar and turbulent flows. The book is limited to explaining and employing the finite difference method. It furnishes a large number of source codes which permit to play with the Navier-Stokes equations and to understand the complex physics related to fluid mechanics. Numerical simulations are useful tools to understand the complexity of the flows, which often is difficult to derive from laboratory experiments. This book, then, can be very useful to scholars doing laboratory experiments, since they often do not have extra time to study the large variety of numerical methods; furthermore they cannot spend more time in transferring one of the methods into a computer language. By means of numerical simulations, for example, insights into the vorticity field can be obtained which are difficult to obtain by measurements. This book can be used by graduate as well as undergraduate students while reading books on theoretical fluid mechanics; it teaches how to simulate the dynamics of flow fields on personal computers. This will provide a better way of understanding the theory. Two chapters on Large Eddy Simulations have been included, since this is a methodology that in the near future will allow more universal turbulence models for practical applications. The direct simulation of the Navier-Stokes equations (DNS) is simple by finite-differences, that are satisfactory to reproduce the dynamics of turbulent flows. A large part of the book is devoted to the study of homogeneous and wall turbulent flows. In the second chapter the elementary concept of finite difference is given to solve parabolic and elliptical partial differential equations. In successive chapters the 1D, 2D, and 3D Navier-Stokes equations are solved in Cartesian and cylindrical coordinates. Finally, Large Eddy Simulations are performed to check the importance of the subgrid scale models. Results for turbulent and laminar flows are discussed, with particular emphasis on vortex dynamics. This volume will be of interest to graduate students and researchers wanting to compare experiments and numerical simulations, and to workers in the mechanical and aeronautic industries.
Schlieren and shadowgraph techniques are basic and valuable tools in various scientific and engineering disciplines. They allow us to see the invisible: the optical inhomogeneities in transparent media like air, water, and glass that otherwise cause only ghostly distortions of our normal vision.These techniques are discussed briefly in many books and papers, but there is no up-to-date complete treatment of the subject before now. The book is intended as a practical guide for those who want to use these methods, as well as a resource for a broad range of disciplines where scientific visualization is important. The colorful 400-year history of these methods is covered in an extensive introductory chapter accessible to all readers.
The role of high performance computing in current research on transitional and turbulent flows is undoubtedly very important. This review volume provides a good platform for leading experts and researchers in various fields of fluid mechanics dealing with transitional and turbulent flows to synergistically exchange ideas and present the state of the art in the fields.Contributed by eminent researchers, the book chapters feature keynote lectures, panel discussions and the best invited contributed papers.
This book is intended for self-study or as a companion of lectures delivered to post-graduate students on the subject of the computational prediction of complex turbulent flows. There are several books in the extensive literature on turbulence that deal, in statistical terms, with the phenomenon itself, as well its many manifestations in the context of fluid dynamics. Statistical Turbulence Modelling for Fluid Dynamics - Demystified differs from these and focuses on the physical interpretation of a broad range of mathematical models used to represent the time-averaged effects of turbulence in computational prediction schemes for fluid flow and related transport processes in engineering and the natural environment. It dispenses with complex mathematical manipulations and instead gives physical and phenomenological explanations. This approach allows students to gain a 'feel' for the physical fabric represented by the mathematical structure that describes the effects of turbulence and the models embedded in most of the software currently used in practical fluid-flow predictions, thus counteracting the ill-informed black-box approach to turbulence modelling. This is done by taking readers through the physical arguments underpinning exact concepts, the rationale of approximations of processes that cannot be retained in their exact form, and essential calibration steps to which the resulting models are subjected by reference to theoretically established behaviour of, and experimental data for, key canonical flows.
This book is intended for self-study or as a companion of lectures delivered to post-graduate students on the subject of the computational prediction of complex turbulent flows. There are several books in the extensive literature on turbulence that deal, in statistical terms, with the phenomenon itself, as well its many manifestations in the context of fluid dynamics. Statistical Turbulence Modelling for Fluid Dynamics - Demystified differs from these and focuses on the physical interpretation of a broad range of mathematical models used to represent the time-averaged effects of turbulence in computational prediction schemes for fluid flow and related transport processes in engineering and the natural environment. It dispenses with complex mathematical manipulations and instead gives physical and phenomenological explanations. This approach allows students to gain a 'feel' for the physical fabric represented by the mathematical structure that describes the effects of turbulence and the models embedded in most of the software currently used in practical fluid-flow predictions, thus counteracting the ill-informed black-box approach to turbulence modelling. This is done by taking readers through the physical arguments underpinning exact concepts, the rationale of approximations of processes that cannot be retained in their exact form, and essential calibration steps to which the resulting models are subjected by reference to theoretically established behaviour of, and experimental data for, key canonical flows.
This is the 4th edition of a book originally published by Kluwer Academic Publishers. It is an exhaustive monograph on turbulence in fluids in its theoretical and applied aspects, with many advanced developments using mathematical spectral methods (two-point closures like the EDQNM theory), direct-numerical simulations, and large-eddy simulations. The book is still of great actuality on a topic of great importance for engineering and environmental applications, and presents a very detailed presentation of the field.The fourth edition incorporates new results coming from research work done since 1997. Many of these results come from direct and large-eddy simulations methods, which have provided significant advances in problems such as turbulent mixing or thermal exchanges (with and without gravity effects).
Challenging problems involvrllg jet and plume phenomena are common to many areas of fundamental and applied scientific research, and an understanding of plume and jet behaviour is essential in many geophysical and industrial contexts. For example, in the field of meteorology, where pollutant dispersal takes place by means of atmospheric jets and plumes formed either naturally under conditions of convectively-driven flow in the atmospheric boundary layer, or anthropogenically by the release of pollutants from tall chimneys. In other fields of geophysics, buoyant plumes and jets are known to play important roles in oceanic mixing processes, both at the relatively large scale (as in deep water formation by convective sinking) and at the relatively small scale (as with plume formation beneath ice leads, for example). In the industrial context, the performances of many engineering systems are determined primarily by the behaviour of buoyant plumes and jets. For example, (i) in sea outfalls, where either sewage or thermal effluents are discharged into marine and/or freshwater environments, (ii) in solar ponds, where buoyant jets are released under density interfaces, (iii) in buildings, where thermally-generated plumes affect the air quality and ventilation properties of architectural environments, (iv) in rotating machinery where fluid jet~ are used for cooling purposes, and (v) in long road and rail tunnels, where safety and ventilation prcedures rely upon an understanding of the behaviour of buoyant jets. In many other engineering and oceanographic contexts, the properties of jets and plumes are of great importance.
The subjects covered in this volume include riblets, LEBUs (Large Eddy Break-Up devices), surface roughness, compliant surfaces and polymer additives. Riblets seem to be one of the most extensively studied devices in the past years. Reflecting this situation in the European Community, there are six papers on riblets covering their practical applications to aircraft and to a model ship, near-wall coherent structure of boundary layer and effects of flow three-dimensionality. Possibility of heat-transfer enhancement with riblets and potential use in the laminar flow are also investigated. An analytical model is developed for the boundary-layer with a LEBU device. Physical mechanisms of turbulent skin-friction reduction with LEBUs are reviewed in the light of some recent studies. The d-type roughness is investigated in conjunction with riblets for drag reduction. A correlation method of roughness parameters with the drag penalties is also presented. Two papers are devoted to further theoretical development of compliant surfaces in transition delay. Probably one of the most exciting recent developments in turbulence management is the use of compliant surfaces in the turbulent boundary layer. There are two papers describing some theoretical experimental work carried out on this subject in the U.S.S.R. Some further studies on the effects of polymer additives are also presented. The volume concludes with an edited record of the lively panel discussions which provided a useful forum to exchange views, plans for future research, collaborative work and industrial applications of drag reduction techniques.
The ultrasonic velocity profile (UVP) method, first developed in medical engineering, is now widely used in clinical settings. The fluid mechanical basis of UVP was established in investigations by the author and his colleagues with work demonstrating that UVP is a powerful new tool in experimental fluid mechanics. There are diverse examples, ranging from problems in fundamental fluid dynamics to applied problems in mechanical, chemical, nuclear, and environmental engineering. In all these problems, the methodological principle in fluid mechanics was converted from point measurements to spatio-temporal measurements along a line. This book is the first monograph on UVP that offers comprehensive information about the method, its principles, its practice, and applied examples, and which serves both current and new users. Current users can confirm that their application configurations are correct, which will help them to improve the configurations so as to make them more efficient and effective. New users will become familiar with the method, to design applications on a physically correct basis for performing measurements accurately. Additionally, the appendix provides necessary practical information, such as acoustic properties.
A study in the development of flow adaptive numerical schemes in computational hydraulics directed to enhancing modelling capabilities. Examples covered include additional flow resistance due to flexible vegetation; one-dimensional supercritical flow; and flow in networks of channels.
This volume continues previous DLES proceedings books, presenting modern developments in turbulent flow research. It is comprehensive in its coverage of numerical and modeling techniques for fluid mechanics. After Surrey in 1994, Grenoble in 1996, Cambridge in 1999, Enschede in 2001, Munich in 2003, Poitiers in 2005, and Trieste in 2009, the 8th workshop, DLES8, was held in Eindhoven, The Netherlands, again under the auspices of ERCOFTAC. Following the spirit of the series, the goal of thisworkshopis to establish a state-of-the-art of DNS and LES techniques for the computation and modeling of transitional/turbulent flows covering a broad scope of topics such as aerodynamics, acoustics, combustion, multiphase flows, environment, geophysics and bio-medical applications. This gathering of specialists in the field was a unique opportunity for discussions about the more recent advances in the prediction, understanding and control of turbulent flows in academic or industrial situations. "
This book provides physical intuition and key entries to the ever-growing body of literature on turbulent reacting flows. It is of a tutorial nature and includes some historical perspective of the theories developed over the past 30 years. A selection of basic and advanced materials is used to build the necessary background and emphasize some of the main concepts that the student or newcomer to the field of turbulent reacting flows should know, thus facilitating further study of specialized research papers and research monographs. A range of exercises is also provided in order to consolidate the student's understanding.
Rheology is primarily concerned with materials: scientific, engineering and everyday products whose mechanical behaviour cannot be described using classical theories. From biological to geological systems, the key to understanding the viscous and elastic behaviour firmly rests in the relationship between the interactions between atoms and molecules and how this controls the structure, and ultimately the physical and mechanical properties. Rheology for Chemists An Introduction takes the reader through the range of rheological ideas without the use of the complex mathematics. The book gives particular emphasis on the temporal behaviour and microstructural aspects of materials, and is detailed in scope of reference. An excellent introduction to the newer scientific areas of soft matter and complex fluid research, the second edition also refers to system dimension and the maturing of the instrumentation market. This book is a valuable resource for practitioners working in the field, and offers a comprehensive introduction for graduate and post graduates. "... well-suited for self-study by research workers and technologists, who, confronted with technical problems in this area, would like a straightforward introduction to the subject of rheology." Chemical Educator, "... full of valuable insights and up-to-date information." Chemistry World
The second edition of this classic book delivers the most up to
date and comprehensive text available on computational fluid
dynamics for engineers and mathematicians. Already renowned for its
range and authority, this new edition has been significantly
developed in terms of both contents and scope. A complete, self
contained text, it will form the basis of study for many leading
CFD courses at senior undergraduate and graduate level: a truly
formidable resource covering the fundamentals of CFD.
The first of its kind in the field, this title examines the use of
modern, shock-capturing finite volume numerical methods, in the
solution of partial differential equations associated with
free-surface flows, which satisfy the shallow-water type assumption
(including shallow water flows, dense gases and mixtures of
materials as special samples).
Taking an engineering, rather than a mathematical, approach, Finite Element Methods for Flow Problems presents the fundamentals of stabilized finite element methods of the Petrov–Galerkin type developed as an alternative to the standard Galerkin method for the analysis of steady and time-dependent problems. The material presented here epitomizes the forefront of current research in several areas of computational fluid dynamics and combines theoretical aspects and practical applications. Coverage includes:
The book provides essential reading for graduate students and researchers in engineering and applied sciences in the finite element field. The book will also be of interest to professionals working in aerospace, automotive, civil, environmental and offshore engineering, and safety technology.
Comprehensive, unique coverage of turbulent flow including modern prediction and measurement Turbulent Flow presents the essential physical and analytical background that enables readers to make informed decisions when choosing the best method for the study and prediction of turbulent flows. Critical focus is given to experimental and numerical methods as well as what these methods have revealed about turbulent motion. Coverage includes an introduction to turbulence theory, the fundamental equations of turbulent flow and their meaning, the techniques used in physical experiments and computer simulations, a review of the progress made in understanding the properties of turbulence, turbulence closures and their applications, and large eddy simulation methods. Cutting-edge material includes:
Turbulent Flow is an essential book for students and an invaluable reference for mechanical and aerospace engineers, physicists and mathematicians in related disciplines, and engineers and scientists in such fields as chemical, biological, and ocean engineering.
This volume is a collection of the main lectures over a broad spectrum of rheological models with singularities as the "Leitmotiv", with 30 papers on the most recent developments in the analysis and understanding of non-linear singularities. Singularity-dominated local fields are frequently encountered in various branches of continuum mechanics, such as elasticity, plasticity, Newtonian fluids and more complex rheological models. Examples are provided by near tip fields of cracks, notches and wedges; interfacial phenomena; flow around corners, wedges and cones; moving contact lines in multiphase systems; cusps in fluid interfaces and shocks and localizations. The volume should be of interest to researchers and engineers in virtually all branches of continuum mechanics.
This second edition of a well established and highly regarded text has been comprehensively refined and updated, based on the author's experience and feedback from using the original edition during the years since its first publication in the early 1990's. The book is split into three parts: Part 1 introduces the physical concepts of the subject and describes various methods for transient control and suppression. - Part 2 is for the more experienced user and describes how to approach the task of assessing to what extent systems might be at risk. It uses eight representative systems and goes on to describe a range of accidents and incidents arising from unexpected causes. - Part 3 provides a database to use in the assessment of pipe systems and the design of protective strategies
A discussion of the fundamental aspects of fluid flow phenomena in a jointed rock mass, as well as various geological (structural) features and their influence on flow deformation characteristics. Various types of laboratory triaxial apparatus used in testing are also highlighted.
A discussion of the fundamental aspects of fluid flow phenomena in a jointed rock mass, as well as various geological (structural) features and their influence on flow deformation characteristics. Various types of laboratory triaxial apparatus used in testing are also highlighted.
An analysis of polymer and composite rheology. This second edition covers flow properties of thermoplastic and thermoset polymers, and general principles and applications of all phases of polymer rheology, with new chapters on the rheology of particulate and fibre composites. It also includes new and expanded detail on polymer blends and emulsions, foams, reacting systems, and flow through porous media as well as composite processing operations. |
You may like...
Variational Analysis and Generalized…
Regina S. Burachik, Jen-Chih Yao
Hardcover
R2,668
Discovery Miles 26 680
Mathematics Across Contemporary Sciences…
Taher Abualrub, Abdul Salam Jarrah, …
Hardcover
Elliptic Carleman Estimates and…
Jerome Le Rousseau, Gilles Lebeau, …
Hardcover
R2,445
Discovery Miles 24 450
Renegades - Born In The USA
Barack Obama, Bruce Springsteen
Hardcover
(1)R911 Discovery Miles 9 110
Introduction to Nonlinear and Global…
Eligius M. T. Hendrix, Boglarka G. -Toth
Hardcover
R1,423
Discovery Miles 14 230
Linear Programming 1 - Introduction
George B. Dantzig, Mukund N. Thapa
Hardcover
R4,322
Discovery Miles 43 220
|