![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of fluids > Flow, turbulence, rheology
A discussion of the fundamental aspects of fluid flow phenomena in a jointed rock mass, as well as various geological (structural) features and their influence on flow deformation characteristics. Various types of laboratory triaxial apparatus used in testing are also highlighted.
Adopts a completely original approach to the study of processes of
mass transfer. In contrast to the usual approach, based on the
concept of continuum media and the theory of heat and mass
transfer, the topic is considered from a new viewpoint, taking into
account the heterogeneous dispersal state of porous bodies. The
author bases his discussion on the theory of surface forces and
microhydrodynamic analysis of the processes of mass transport of
gases, liquids and vapors, providing the reader with a systematic
account of liquid/solid and gas/solid interfaces.
An analysis of polymer and composite rheology. This second edition covers flow properties of thermoplastic and thermoset polymers, and general principles and applications of all phases of polymer rheology, with new chapters on the rheology of particulate and fibre composites. It also includes new and expanded detail on polymer blends and emulsions, foams, reacting systems, and flow through porous media as well as composite processing operations.
This monograph focusing on gas flows addresses mostly theoretical issues and develops semi-analytical models as well as numerical methods for stimulating micro flows. It is appropriate for researchers in fluid mechanics interested in this new flow field as well as for electrical or mechanical engineers or physicists who need to incorporate flow modeling into their work. From the reviews: "For those who want to compute flows at the micro scale, this monograph is a must. It describes the state of the art and helps by providing coefficients, such as [are] needed in situations of slip. Those who wonder what new fluid dynamics there is in the microworld are served by the overview of theory and treasures of numerical methods." ?EUROPEAN JOURNAL OF MECHANICS B / FLUIDS
With the appearance and fast evolution of high performance
materials, mechanical, chemical and process engineers cannot
perform effectively without fluid processing knowledge. The purpose
of this book is to explore the systematic application of basic
engineering principles to fluid flows that may occur in fluid
processing and related activities.
Techniques and Topics in Flow Measurement covers the applications
and techniques of flow measurement. This definitive book provides
guidelines for choosing appropriate techniques and assuring valid
measurements as well as describes methods for treatment of
calibration data in fluid flow under various conditions. The book
also covers three systems of units: the SI system, the English
Absolute Dimensional system, and the English Engineering system.
Commonly used - and often misused - variables such as force,
weight, and pressure are defined, and the relationships between the
systems for these common variables are summarized.
The LES-method is rapidly developing in many practical applications in engineering The mathematical background is presented here for the first time in book form by one of the leaders in the field
The sixth ERCOFTAC Workshop on 'Direct and Large-Eddy Simulation' (DLES-6) was held at the University of Poitiers from September 12-14, 2005. Following the tradition of previous workshops in the DLES-series, this edition has reflected the state-of-the-art of numerical simulation of transitional and turbulent flows and provided an active forum for discussion of recent developments in simulation techniques and understanding of flow physics.
Since its discovery in early 1900, turbulence has been an interesting and complex area of study. Written by international experts, Air Pollution and Turbulence: Modeling and Applications presents advanced techniques for modeling turbulence, with a special focus on air pollution applications, including pollutant dispersion and inverse problems. The book s foreword was written by specialists in the field, including the Professor Sergej Zilitinkevich. Offering innovative atmospheric mathematical modeling methods, which can also be applied to other disciplines, the book includes:
The book provides a solid theoretical understanding of turbulence and includes cases studies that illustrate subjects related to environmental sciences and environmental modeling. It reflects and summarizes recent developments in key areas of modeling atmospheric turbulence and air pollution. It pulls together information on techniques and methods used on turbulence, air pollution, and applications. While these topics are often covered separately, this book s combined coverage of all three areas sets it apart.
Momentum, heat and mass transport phenomena can be found everywhere in nature. A solid understanding of the principles of these processes is essential for chemical and process engineers. The second edition of Transport Phenomena builds on the foundation of the first edition which presented fundamental knowledge and practical application of momentum, heat and mass transfer processes in a form useful to engineers. This revised edition includes revisions of the original text in addition to new applications providing a thoroughly updated edition. This updated text includes;
This comprehensive guide offers authoritative answers on flow measurement from dozens of leading experts. Fully illustrated with diagrams, tables, and formulas, Flow Measurement covers virtually every type of flow meter in use today, including those for heat exchangers and gaseous fuels, and laminar, magnetic and mass flow meters. Valuable information on applications and selection criteria.
This book covers in one volume, both the theoretical development, as well as appropriate numerical solutions, for all aspects of transport phenomena. It contains a basic introduction to many aspects of fluid mechanics, heat transfer and mass transfer, and the conservation equations for mass, energy and momentum are discussed with reference to engineering applications. Heat transfer by conduction, radiation, natural and forced convection is studied, as well as mass transfer and incompressible fluid mechanics.
"Analysis and Modelling of Non-Steady Flow in Pipe and Channel Networks" deals with flows in pipes and channel networks from the standpoints of hydraulics and modelling techniques and methods. These engineering problems occur in the course of the design and construction of hydroenergy plants, water-supply and other systems. In this book, the author presents his experience in solving these problems from the early 1970s to the present day. During this period new methods of solving hydraulic problems have evolved, due to the development of computers and numerical methods. This book is accompanied by a website which hosts the author's software package, "Simpip ""("an abbreviation of "sim""ulation of pipe flow) "for solving non-steady pipe flow using the finite element method. The program also covers flows in channels. The book presents the numerical core of the SimpipCore program (written in Fortran). Key features: Presents the theory and practice of modelling different flows in hydraulic networksTakes a systematic approach and addresses the topic from the fundamentalsPresents numerical solutions based on finite element analysisAccompanied by a website hosting supporting material including the SimpipCore project as a standalone program "Analysis and Modelling of Non-Steady Flow in Pipe and Channel Networks" is an ideal reference book for engineers, practitioners and graduate students across engineering disciplines.
This volume contains an overview of the state of turbulence research with some bias towards work done in Europe. It represents an almost complete collection of the invited and contributed papers delivered at the Seventh European Turbulence Conference, sponsored by EUROMECH and ERCOFTAC and organized by the Observatoire de la Cote d'Azur. High-Reynolds number experiments combined with techniques of imaging, non-intrusive probing, processing and simulation provide high-quality data which put significant constraints on possible theories. For the first time, it has been shown, for a class of passive scalar problems, why dimensional analysis sometimes gives the wrong answers and how anomalous intermittency corrections can be calculated from first principles. The volume is thus geared towards specialists in the area of flow turbulence who could not attend the conference as well as anybody interested in this rapidly-moving field.
Numerical Computation of Internal and External Flows Volume 2: Computational Methods for Inviscid and Viscous Flows C. Hirsch, Vrije Universiteit Brussel, Brussels, Belgium This second volume deals with the applications of computational methods to the problems of fluid dynamics. It complements the first volume to provide an excellent reference source in this vital and fast growing area. The author includes material on the numerical computation of potential flows and on the most up-to-date methods for Euler and Navier-Stokes equations. The coverage is comprehensive and includes detailed discussion of numerical techniques and algorithms, including implementation topics such as boundary conditions. Problems are given at the end of each chapter and there are comprehensive reference lists. Of increasing interest, the subject has powerful implications in such crucial fields as aeronautics and industrial fluid dynamics. Striking a balance between theory and application, the combined volumes will be useful for an increasing number of courses, as well as to practitioners and researchers in computational fluid dynamics. Contents Preface Nomenclature Part V: The Numerical Computation of Potential Flows Chapter 13 The Mathematical Formulations of the Potential Flow Model Chapter 14 The Discretization of the Subsonic Potential Equation Chapter 15 The Computation of Stationary Transonic Potential Flows Part VI: The Numerical Solution of the System of Euler Equations Chapter 16 The Mathematical Formulation of the System of Euler Equations Chapter 17 The Lax — Wendroff Family of Space-centred Schemes Chapter 18 The Central Schemes with Independent Time Integration Chapter 19 The Treatment of Boundary Conditions Chapter 20 Upwind Schemes for the Euler Equations Chapter 21 Second-order Upwind and High-resolution Schemes Part VII: The Numerical Solution of the Navier-Stokes Equations Chapter 22 The Properties of the System of Navier-Stokes Equations Chapter 23 Discretization Methods for the Navier-Stokes Equations Index
Modelling transport and mixing by turbulence in complex flows are huge challenges for computational fluid dynamics (CFD). This highly readable book introduces readers to modelling levels that respect the physical complexity of turbulent flows. It examines the hierarchy of Reynolds-averaged Navier-Stokes (RANS) closures in various situations ranging from fundamental flows to three-dimensional industrial and environmental applications. The general second-moment closure is simplified to linear eddy-viscosity models, demonstrating how to assess the applicability of simpler schemes and the conditions under which they give satisfactory predictions. The principal changes for the second edition reflect the impact of computing power: a new chapter devoted to unsteady RANS and another on how large-eddy simulation, LES, and RANS strategies can be effectively combined for particular applications. This book will remain the standard for those in industry and academia seeking expert guidance on the modelling options available, and for graduate students in physics, applied mathematics and engineering entering the world of turbulent flow CFD.
This comprehensive two volume reference work is devoted to the
important details regarding the application of the finite element
method to incompressible flows, addressing the theoretical
background and the detailed development of appropriate numerical
methods applied to their solution. Volume One provides extensive
coverage of the prototypical fluid mechanics equation: the
advection-diffusion equation. In addition, for both this equation
and the equations of principal interest - the Navier-Stokes
equations - (covered in detail in Volume Two), a discussion of both
the continuous and discrete equations is presented. Also addressed
are explanations of how to properly march the time-dependent
equations using smart implicit methods. Boundary and initial
conditions, so important in applications, are thoroughly described
and discussed, including well-posedness. The important role played
by the pressure, so confusing in the past, is carefully explained.
Together, this two volume work explains and emphasizes consistency
in six areas:
This book presents a comprehensive overview of microrheology, emphasizing the underlying theory, practical aspects of its implementation, and current applications to rheological studies in academic and industrial laboratories. The field of microrheology continues to evolve rapidly, and applications are expanding at an accelerating pace. Readers will learn about the key methods and techniques, including important considerations to be made with respect to the materials most amenable to microrheological characterization and pitfalls to avoid in measurements and analysis. Microrheological measurements can be as straightforward as video microscopy recordings of colloidal particle Brownian motion; these simple experiments can yield rich rheological information. Microrheology covers topics ranging from active microrheology using laser or magnetic tweezers to passive microrheology, such as multiple particle tracking and tracer particle microrheology with diffusing wave spectroscopy. Overall, this introduction to microrheology informs those seeking to incorporate these methods into their own research, or simply survey and understand the growing body of microrheology literature. Many sources of archival literature are consolidated into an accessible volume for rheologist and non-specialist alike. The small sample sizes of many microrheology experiments have made it an important method for studying emerging and scarce biological materials, making this characterization method suitable for application in a variety of fields.
This is a modern presentation of the fundamentals of continuum mechanics as applied to the analysis of the plastic flow in metal forming. Metal forming plasticity is an advanced subject of intensive current research, relevant to both materials science and mechanical engineering. It is used for the analysis and modelling of fabrication processes such as forging, extrusion, rolling, and wire and tube drawing. The fundamentals of flow mechanics are explained here before they are applied in a variety of machine-tool design engineering situations. These fundamentals form the basis of all engineering analyses of the plastic flow in metal forming. Worked examples show the variety of metal forming situations, and approximately 200 end-of-chapter problems are also included.
Drag reduction is a field of study in many engineering disciplines, and its aim is to reduce the fluid-mechanical forces exerted in an object in order to improve its mechanical and/or fuel efficiency. This book provides a guide to the current state-of-the-art in this area of engineering.
The International Workshop on Turbulent Combustion was held September 14-15, 2000, at the Nagoya Institute of Technology, to review the present status of turbu lent combustion studies. Reviews were presented by Prof. F. A. Williams of the Uni versity of California, San Diego; Prof. Ken Bray of the University of Cambridge; and Prof. Jay Gore of Purdue University. Dr. Howard Baum of the National Institute of Standards and Technology and Dr. Jim McDonough of the University of Ken tucky participated in the discussion. Some ten papers, describing the latest findings of Japanese studies in this field, were given at the meeting. About half of these studies are supported by a national project, the Open and Integrated Research Pro gram, Creation of New Functionalized Thermo-Fluid Systems by Turbulence Con trol, that started only recently under the sponsorship of the Science and Technology Agency of Japan. The meeting was a great success and gave impetus and a sense of perspective to young Japanese researchers through the excellent reviews and valu able comments their work received. I believe that this kind of open discussion is indispensable for any project to produce a good outcome, and I would like to extend my sincere thanks to all who participated in the meeting. Finally, I would like to express my special thanks to Prof. Tatsuya Hasegawa of the Nagoya Institute of Technology, Prof. Akira Yoshida of Tokyo Denki University, Prof."
The "Turbulence and Interactions 2006" (TI2006) conference was held on the island of Porquerolles, France, May 29-June 2, 2006. The scientific sponsors of the conference were * Association Francaise de Mecanique, * CD-adapco, * DGA * Ecole Polytechnique Federale de Lausanne (EPFL), * ERCOFTAC : European Research Community on Flow, Turbulence and Combustion, * FLUENT, * The French Ministery of Foreign Affairs, * Laboratoire de Modelisation en Mecanique, Paris 6, * ONERA. The conference was a unique event. Never before have so many organisations concerned with turbulence works come together in one conference. As the title "Turbulence and Interactions" anticipated, the workshop was not run with parallel sessions but instead of one united gathering where people had strong interactions and discussions. Many of the 85 or so attendants were veterans of previous ERCOFTAC conferences. Some young researchers attended their very first int- national meeting. The organisers were fortunate in obtaining the presence of the following - vited speakers: N. Adams (TUM, Germany), C. Cambon (ECL, France), J.-P. Dussauge (Polytech Marseille, France), D.A. Gosman (Imperial College, UK), Y. Kaneda (Nagoya University, Japan), O. Simonin (IMFT, France), G. Tryggvason (WPI, USA), D. Veynante (ECP, France), F. Waleffe (University of Wisconsin, USA), Y.K. Zhou (University of California, USA). The topics covered by the 59 papers ranged from experimental results through theory to computations. The papers of the conference went through the usual - viewing process for two special issues of international journals : Computers and Fluids, and Flow, Turbulence and Combustion.
Part textbook, part exploratory work, this book aims to raise the awareness of students, physicists, and engineers in turbulence on the modeling of gravitationally induced turbulent mixing flows as produced, for instance, by Rayleigh-Taylor instabilities. The discussion is centered on the differences between single-fluid and two-fluid approaches, and it is illustrated with a 0D analysis of two specific elementary models in common use. Important deviations are shown to appear on many features, among others the prominence of directed energy, the simultaneous restitution of test cases, the responses to variable acceleration and shocks, and the behavior of various length scales.
The workshop "Dynamics and Structure of vortices" was held in the Clo tre des Penitents in Rouen, France on the 27th and 28th April,1999. Our understanding of the structure and dynamics of vortices has improved considerably during the last few years, mainly thanks to progress in turbulence research, where these structures have been shown to play an important role. The aim of this French workshop was to gather theoreticians, computational researchers and experimentalists to illuminate various aspects of this sub ject. We wanted on the one hand to present the state of art, and on the other hand to collect the most recent contributions on the structure and dynamics of vortices. This volume presents 22 articles corresponding to seminars and presen- tions given during this workshop. The ?rst three articles correspond to general presentations: A. Babiano presents the two-dimensional aspects of vortices; S. Huberson and O. Daube give a review on numerical methods applied to vortical ?ow; and M. Rossi presents theories of vortex instability. The following 19 papers correspond to presentations given by the parti- pants on their research subjects related to experimental, numerical or theore- cal aspects of vortices. Many of these studies are tied to related ?elds, such as turbulence, aerodynamics, wakes, geophysics, mixing, particles dynamics ... The scienti?c committee of the workshop, A. Babiano, A. Maurel, P. Pet- jeans and M. Rossi thank the CNRS for ?nancial support through the Groupe de Recherche "Turbulence" and the Groupe de Recherche "M ecanique fon- mentale des ?uides geophysiques et astrophysiques,"and also the Association Fran, caise de M ecanique." |
You may like...
Free-Surface Flow - Environmental Fluid…
Nikolaos D. Katopodes
Paperback
Modeling and Simulation of Reactive…
de A. L. Bortoli, Greice Andreis, …
Paperback
R1,725
Discovery Miles 17 250
Understanding Viscoelasticity - An…
Nhan Phan-Thien, Nam Mai-Duy
Hardcover
R3,105
Discovery Miles 31 050
Free-Surface Flow - Computational…
Nikolaos D. Katopodes
Paperback
Rheology of Non-spherical Particle…
Francisco Chinesta, Ausias Gilles
Hardcover
R2,689
Discovery Miles 26 890
Computational Techniques for Multiphase…
Guan Heng Yeoh, Jiyuan Tu
Paperback
|