![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of fluids > Flow, turbulence, rheology
This volume collects the edited and reviewed contributions presented in the 8th iTi Conference on Turbulence, held in Bertinoro, Italy, in September 2018. In keeping with the spirit of the conference, the book was produced afterwards, so that the authors had the opportunity to incorporate comments and discussions raised during the event. The respective contributions, which address both fundamental and applied aspects of turbulence, have been structured according to the following main topics: I TheoryII Wall-bounded flowsIII Simulations and modellingIV ExperimentsV Miscellaneous topicsVI Wind energy
This book deals with the simulation of the incompressible Navier-Stokes equations for laminar and turbulent flows. The book is limited to explaining and employing the finite difference method. It furnishes a large number of source codes which permit to play with the Navier-Stokes equations and to understand the complex physics related to fluid mechanics. Numerical simulations are useful tools to understand the complexity of the flows, which often is difficult to derive from laboratory experiments. This book, then, can be very useful to scholars doing laboratory experiments, since they often do not have extra time to study the large variety of numerical methods; furthermore they cannot spend more time in transferring one of the methods into a computer language. By means of numerical simulations, for example, insights into the vorticity field can be obtained which are difficult to obtain by measurements. This book can be used by graduate as well as undergraduate students while reading books on theoretical fluid mechanics; it teaches how to simulate the dynamics of flow fields on personal computers. This will provide a better way of understanding the theory. Two chapters on Large Eddy Simulations have been included, since this is a methodology that in the near future will allow more universal turbulence models for practical applications. The direct simulation of the Navier-Stokes equations (DNS) is simple by finite-differences, that are satisfactory to reproduce the dynamics of turbulent flows. A large part of the book is devoted to the study of homogeneous and wall turbulent flows. In the second chapter the elementary concept of finite difference is given to solve parabolic and elliptical partial differential equations. In successive chapters the 1D, 2D, and 3D Navier-Stokes equations are solved in Cartesian and cylindrical coordinates. Finally, Large Eddy Simulations are performed to check the importance of the subgrid scale models. Results for turbulent and laminar flows are discussed, with particular emphasis on vortex dynamics. This volume will be of interest to graduate students and researchers wanting to compare experiments and numerical simulations, and to workers in the mechanical and aeronautic industries.
This book presents an introduction to viscoelasticity, in particular, to the theories of dilute polymer solutions and dilute suspensions of rigid particles in viscous and incompressible fluids. These theories are important, not just because they apply to practical problems of industrial interest, but because they form a solid theoretical base upon which mathematical techniques can be built, from which more complex theories can be constructed, to better mimic material behaviour. The emphasis of this book is not on the voluminous current topical research, but on the necessary tools to understand viscoelasticity. This is a compact book for a first year graduate course in viscoelasticity and modelling of viscoelastic multiphase fluids. The Dissipative Particle Dynamics (DPD) is introduced as a particle-based method, relevant in modelling of complex-structured fluids. All the basic ideas in DPD are reviewed. The third edition has been updated and expanded with new results in the meso-scale modelling, links between the fluid modelling to its physical parameters and new matlab programs illustrating the modelling. Particle-based modelling techniques for complex-structure fluids are added together with some sample programs. A solution manual to the problems is included.
Integrating basic to applied science and technology in medicine, pharmaceutics, molecular biology, biomedical engineering, biophysics and irreversible thermodynamics, this book covers cutting-edge research of the structure and function of biomaterials at a molecular level. In addition, it examines for the first time studies performed at the nano- and micro scale. With innovative technologies and methodologies aiming to clarify the molecular mechanism and macroscopic relationship, Nano/Micro Science and Technology in Biorheology thoroughly covers the basic principles of these studies, with helpful step-by-step explanations of methodologies and insight into medical applications. Written by pioneering researchers, the book is a valuable resource for academics and industry scientists, as well as graduate students, working or studying in bio-related fields.
Taking an engineering, rather than a mathematical, approach, Finite Element Methods for Flow Problems presents the fundamentals of stabilized finite element methods of the Petrov–Galerkin type developed as an alternative to the standard Galerkin method for the analysis of steady and time-dependent problems. The material presented here epitomizes the forefront of current research in several areas of computational fluid dynamics and combines theoretical aspects and practical applications. Coverage includes:
The book provides essential reading for graduate students and researchers in engineering and applied sciences in the finite element field. The book will also be of interest to professionals working in aerospace, automotive, civil, environmental and offshore engineering, and safety technology.
The pursuit of the golden balance between oversimplification and overload with theory has always been the primary goal of every author of book on rheology. Rheology. Concepts, Methods, and Applications, 2nd Ed. is a tool for chemists and chemical engineers to solve many practical problems. They have to learn what to measure, how to measure, and what to do with the data. But, the learning process should not take users away from their major goals, such as manufacturing quality products, developing new materials, analysis of material durability. In the book various aspects of theoretical rheology as well as methods of measurement and raw data treatment and how to use rheological methods in different groups of products are discusses. The authors share their experiences of many years of experimental studies and teaching to show use of rheology in studies of materials. They and were very meticulous in giving historical background of contributors to rheology as a science and as the method of solving many practical problems. This book is very useful as a teaching tool in universities and
colleges because it is consistent with programs of rheology
courses. Practicality of this book will prepare students for
typical tasks in industry. Equally it serves the industry and
accomplished rheologists because it contains expert advice of two
very famous and accomplished scientists and teachers who know
discoveries first-hand because they may have taken part in some of
them.
This book provides essential information on the higher mathematical level of approximation over the gradually varied flow theory, also referred to as the Boussinesq-type theory. In this context, it presents higher order flow equations, together with their applications in a broad range of pertinent engineering and environmental problems, including open channel, groundwater, and granular material flows.
This book explores the outcomes on flow control research activities carried out within the framework of two EU-funded projects focused on training-through-research of Marie Sklodowska-Curie doctoral students. The main goal of the projects described in this monograph is to assess the potential of the passive- and active-flow control methods for reduction of fuel consumption by a helicopter. The research scope encompasses the fields of structural dynamics, fluid flow dynamics, and actuators with control. Research featured in this volume demonstrates an experimental and numerical approach with a strong emphasis on the verification and validation of numerical models. The book is ideal for engineers, students, and researchers interested in the multidisciplinary field of flow control.
The subjects covered in this volume include riblets, LEBUs (Large Eddy Break-Up devices), surface roughness, compliant surfaces and polymer additives. Riblets seem to be one of the most extensively studied devices in the past years. Reflecting this situation in the European Community, there are six papers on riblets covering their practical applications to aircraft and to a model ship, near-wall coherent structure of boundary layer and effects of flow three-dimensionality. Possibility of heat-transfer enhancement with riblets and potential use in the laminar flow are also investigated. An analytical model is developed for the boundary-layer with a LEBU device. Physical mechanisms of turbulent skin-friction reduction with LEBUs are reviewed in the light of some recent studies. The d-type roughness is investigated in conjunction with riblets for drag reduction. A correlation method of roughness parameters with the drag penalties is also presented. Two papers are devoted to further theoretical development of compliant surfaces in transition delay. Probably one of the most exciting recent developments in turbulence management is the use of compliant surfaces in the turbulent boundary layer. There are two papers describing some theoretical experimental work carried out on this subject in the U.S.S.R. Some further studies on the effects of polymer additives are also presented. The volume concludes with an edited record of the lively panel discussions which provided a useful forum to exchange views, plans for future research, collaborative work and industrial applications of drag reduction techniques.
This book provides a review of the current understanding of the behavior of non-spherical particle suspensions providing experimental results, rheological models and numerical modeling. In recent years, new models have been developed for suspension rheology and as a result applications for nanocomposites have increased. The authors tackle issues within experimental, model and numerical simulations of the behavior of particle suspensions. Applications of non-spherical particle suspension rheology are widespread and can be found in organic matrix composites, nanocomposites, biocomposites, fiber-filled fresh concrete flow, blood and biologic fluids.
Useful as a reference for engineers in industry and as an advanced
level text for graduate engineering students, Multiphase Flow and
Fluidization takes the reader beyond the theoretical to demonstrate
how multiphase flow equations can be used to provide applied,
practical, predictive solutions to industrial fluidization
problems. Written to help advance progress in the emerging science
of multiphase flow, this book begins with the development of the
conservation laws and moves on through kinetic theory, clarifying
many physical concepts (such as particulate viscosity and solids
pressure) and introducing the new dependent variable--the volume
fraction of the dispersed phase. Exercises at the end of each
chapterare provided for further study and lead into applications
not covered in the text itself.
This book offers a comprehensive introduction to polymer rheology with a focus on the viscoelastic characterization of polymeric materials. It contains various numerical algorithms for the processing of viscoelastic data, from basic principles to advanced examples which are hard to find in the existing literature. The book takes a multidisciplinary approach to the study of the viscoelasticity of polymers, and is self-contained, including the essential mathematics, continuum mechanics, polymer science and statistical mechanics needed to understand the theories of polymer viscoelasticity. It covers recent achievements in polymer rheology, such as theoretical and experimental aspects of large amplitude oscillatory shear (LAOS), and numerical methods for linear viscoelasticity, as well as new insights into the interpretation of experimental data. Although the book is balanced between the theoretical and experimental aspects of polymer rheology, the author's particular interest in the theoretical side will not remain hidden. Aimed at readers familiar with the mathematics and physics of engineering at an undergraduate level, the multidisciplinary approach employed enables researchers with various scientific backgrounds to expand their knowledge of polymer rheology in a systematic way.
The areas of suspension mechanics, stability and computational rheology have exploded in scope and substance in the last decade. The present book is one of the first of a comprehensive nature to treat these topics in detail. The aim of the authors has been to highlight the major discoveries and to present a number of them in sufficient breadth and depth so that the novice can learn from the examples chosen, and the expert can use them as a reference when necessary. The first two chapters, grouped under the category "General Principles," deal with the kinematics of continuous media and the balance laws of mechanics, including the existence of the stress tensor and extensions of the laws of vector analysis to domains bounded by fractal curves or surfaces. The third and fourth chapters, under the heading "Constitutive Modelling," present the tools necessary to formulate constitutive equations from the continuum or the microstructural approach. The last three chapters, under the caption "Analytical and Numerical Techniques," contain most of the important results in the domain of the fluid mechanics of viscoelasticity, and form the core of the book. A number of topics of interest have not yet been developed to a theoretical level from which applications can be made in a routine manner. However, the authors have included these topics to make the reader aware of the state of affairs so that research into these matters can be carried out. For example, the sections which deal with domains bounded by fractal curves or surfaces show that the existence of a stress tensor in such regions is still open to question. Similarly, the constitutive modelling of suspensions, especially at high volume concentrations, with the corresponding particle migration from high to low shear regions is still very sketchy.
"Analysis of Turbulent Flows" is written by one of the most prolific authors in the field of CFD. Professor of Aerodynamics at SUPAERO and Director of DMAE at ONERA, Professor Tuncer Cebeci calls on both his academic and industrial experience when presenting this work. Each chapter has been specifically constructed to provide a comprehensive overview of turbulent flow and its measurement. "Analysis of Turbulent Flows" serves as an advanced textbook for PhD candidates working in the field of CFD and is essential reading for researchers, practitioners in industry and MSc and MEng students. The field of CFD is strongly represented by the following
corporate organizations: Boeing, Airbus, Thales, United
Technologies and General Electric. Government bodies and academic
institutions also have a strong interest in this exciting
field.
Fluid flow through small channels has become a popular research topic due to the emergence of biochemical lab-on-the-chip systems and microelectromechanical system fabrication technologies, which began in the late 1980's. There has been significant progress in the development of microfluidics and nanofluidics both at the application as well as at the fundamental and simulation levels in the last few years. This book provides a comprehensive summary of using computational tools to describe fluid flow in micro and nano configuration. This new version of the original book now covers length scales from Anstroms to microns (and beyond). The authors have maintained the emphasis on fundamental concepts with a mix of semianalytical, experimental and numerical results, and have outlined their relevance to modelling and analyzing functional devices. The material is devided into the three main categories of gas flows, liquid flows, and simulation techniques. The book contains many new developments and information has been updated and modified throughout. flow field as well as for electrical or mechanical engineers or physicists who need to incorporate flow modeling into their work. Review of earlier book by Karniadakis/Beskok on Microflows: For those who want to compute flows at the micro scale, this monograph is a must. It describes the state of the art and helps by providing coefficients, such as are] needed in situations of slip. Those who wonder what new fluid dynamics there is in the microworld are served by the overview of theory and treasures of numerical methods.EUROPEAN JOURNAL OF MECHANICS B / FLUID
The subject of turbulence remains and probably will remain as the most exciting one for the mind of researchers in a variety of ?elds. Since publication of the ?rst edition of this book in November 2001 a number of otherbooksonturbulencehaveappeared,forexampleBernardandWallace (2002), Oberlack and Busse (2002), Foias et al. (2001), Biskamp (2003), Davidson(2004),Jovanovich(2004),SagautandCambon(2008)tomention afew. Soonehastoaskagain thequestionwhyasecondeditionofonebook from a ?eld of so many on the same subject? Does it make any di?erence? Thereareadditionalreasonsapartofthosegiveninthe?rstedition. One of thebasic premises of this bookis thatWeabsolutelymustleave roomfor doubtor thereis noprogress and nolearning. Thereis nolearning without posing a question. And a question requires doubt...Now the freedom of doubt,whichisabsolutelyessentialforthedevelopmentofscience,wasborn from astruggle with constituted authorities...R. Feynmann (1964). This is closely related to the term 'conceptual ': the book has now a di?erent title An informal conceptual introduction to turbulence. One of the main f- tures of the ?rst edition was indeed its conceptual orientation. The second edition is an attempt to make this feature dominant. Consequently items whicharesecondaryfromthispointofview werereducedandeven removed in favour of those added which are important conceptually. This required addressing in more detail most common misconceptions, which are con- quencesoftheprofounddi?cultiesofthesubjectandwhichtravel fromone publication to another. Consequently a one page Appendix D listing some of these misconceptions in the ?rst edition became chapter 9 titled Ana- gies,misconceptions and ill de?ned concepts.
This volume is a collection of the main lectures over a broad spectrum of rheological models with singularities as the "Leitmotiv", with 30 papers on the most recent developments in the analysis and understanding of non-linear singularities. Singularity-dominated local fields are frequently encountered in various branches of continuum mechanics, such as elasticity, plasticity, Newtonian fluids and more complex rheological models. Examples are provided by near tip fields of cracks, notches and wedges; interfacial phenomena; flow around corners, wedges and cones; moving contact lines in multiphase systems; cusps in fluid interfaces and shocks and localizations. The volume should be of interest to researchers and engineers in virtually all branches of continuum mechanics.
The invention of lasers in the early 1960s enhanced the rapid development of optoelectronics which had introduced various optical measurement methods. A typical example of the methods is found in measurements of velocity. It is well recognized that optical velocity measuring methods have important advantages, such as noncontacting and nondisturbing operations, over c- ventional methods employed previously. These fundamental advantages are indicated by the enormous research e?ort which has gone into their devel- ment for many years. One of the optical methods proposed and studied to measure the velocity is laser Doppler velocimetry which was proposed in the early 1960s and extensively studied by many investigators and is at present applied to practical uses. Another is spatial ?ltering velocimetry which was also proposed in the early 1960s and studied by a number of investigators. In comparison with laser Doppler velocimetry, spatial ?ltering velocimetry had not received much attention from investigators but was studied steadily by several research groups mainly in Japan and is now practically used in various ?elds of engineering. Several important books on laser Doppler velocimetry have already been published, but there has been no book on spatial ?ltering velocimetry. This book is the ?rst contribution to spatial ?ltering velocimetry. Therefore, the Introduction of Chapter 1 provides in detail a historical review of spatial ?ltering velocimetry, relating it to other optical methods and discussing its practical relevance. In the book following Chap.
The priority research, Analysis, Modelling and Numerical Calculations ofMul tiphase Flows" was running for 6 years (from 1996 to 2002) and financially sup ported by the Deutsche Forschungsgemeinschaft (DFG). The main objective ofthe research programme was to provide a better understanding of the physical basis for multiphase gas-liquid flows as they are found in numerous chemical and bio chemical reactors. The research comprised steady and unsteady multiphase flows in three frequently found reactor configurations, namely bubble columns without interiors, loop reactors, and aerated stirred vessels. For this purpose, new and im proved measurement techniques should be developed. From the resulting knowl edge and data, new and refined models for describing the underlying physical processes should result, which can be used for the establishment and improvement of analytic as well as numerical methods for predicting multiphase reactors. Thereby, the development, lay-out and scale-up ofsuch processes should be pos sible on a more reliable basis. For achieving this objective three research areas were defined: development and improvement of experimental techniques which allow accu rate measurements in steady and unsteady multiphase flows elaboration of new modelling approaches in order to describe the basic trans port processes for mass, momentum, and heat in bubbly flows development of analytical and numerical methods supplemented by the new modelling strategies in order to support optimisation and lay-out of technical multiphase processes."
This volume contains fourteen papers on mathematical problems of flow and transport through porous media presented at the conference held at Oberwolfach, June 21-27, 1992. Among the topics covered are miscible and immiscible displacement, groundwater contamination, reaction-diffusion instabilities and moving boundaries, random and fractal media, microstructure models, homogenization, spatial heterogeneties, inverse problems, degenerate equations. The papers deal with aspects of modelling, mathematical theory, numerical methods and applications in the engineering sciences.
The practical importance of turbulence led the U.K. Royal Academy of Engineering to launch an Initiative on Turbulence, the most important outcome of which was the definition and agreement of the 1999 Newton Institute Research Programme on Turbulence. The main aim of the- month programme, held at the institute in Cambridge, was to bring together the mathematics and engineering communities involved in the turbulence area to address the many problems and to map out future strategy. As a part of the Research Programme, a Symposium on Direct and Large-Eddy Simulation was jointly organised with ERCOFfAC through their Large-Eddy Simulation Interest Group and took place in May 1999. Two previous ERCOFf AC Workshops had already taken place on these closely related varieties of turbulence simulation, at The University of Surrey in 1994 and at Universite Joseph Fourier, Grenoble in 1996. The Symposium at Cambridge was therefore the third in the ERCOFTAC series, enhanced by the presence of leading figures in the field from Europe and the USA who were resident at INI for that period of the Research Programme. Professors M. Germano, A. Leonard, J. Jimenez, R. Kerr and S. Sarkar gave the invited lectures, text versions of which will be found in this volume. As occurred at the previous two ERCOFT AC workshops, there were almost one hundred participants mostly from Europe but including some from Japan and the USA, including on this occasion resident scientists of the INI Research Programme.
Free surface flows arise in the natural world, physical and biological sciences and in some areas of modern technology and engineering. Exam ples include the breaking of sea waves on a harbour wall, the transport of sloshing fluids in partly filled containers, and the design of micronozzles for high speed ink-jet printing. Apart from the intrinsic mathematical challenge in describing and solving the governing equations, there are usually important environmental, safety and engineering features which need to be analysed and controlled. A rich variety of techniques has been developed over the past two decades to facilitate this analysis; singular perturbations, dynamical systems, and the development of sophisticated numerical codes. The extreme and sometimes violent nature of some free surface flows taxes these methods to the limit. The work presented at the symposium addressed these limits and can be loosely classified into four areas: (i) Axisymmetric free surface flows. There are a variety of problems in the printing, glass, fertiliser and fine chemical industries in which threads of fluid are made and controlled. Presentations were made in the areas of pinch-off for inviscid and viscous threads of fluid, recoil effects after droplet formation and the control of instability by forced vibration. (ii) Dynamic wetting. The motion of three phase contact lines, which are formed at the junction between two fluids and a solid, plays an important role in fluid mechanics."
This single-volume work gives an introduction to the fields of transition, turbulence, and combustion modeling of compressible flows and provides the physical background for today's modeling approaches in these fields. It presents basic equations and discusses fundamental aspects of hydrodynamical instability.
Turbulence modeling both addresses a fundamental problem in physics, 'the last great unsolved problem of classical physics, ' and has far-reaching importance in the solution of difficult practical problems from aeronautical engineering to dynamic meteorology. However, the growth of supercom puter facilities has recently caused an apparent shift in the focus of tur bulence research from modeling to direct numerical simulation (DNS) and large eddy simulation (LES). This shift in emphasis comes at a time when claims are being made in the world around us that scientific analysis itself will shortly be transformed or replaced by a more powerful 'paradigm' based on massive computations and sophisticated visualization. Although this viewpoint has not lacked ar ticulate and influential advocates, these claims can at best only be judged premature. After all, as one computational researcher lamented, 'the com puter only does what I tell it to do, and not what I want it to do. ' In turbulence research, the initial speculation that computational meth ods would replace not only model-based computations but even experimen tal measurements, have not come close to fulfillment. It is becoming clear that computational methods and model development are equal partners in turbulence research: DNS and LES remain valuable tools for suggesting and validating models, while turbulence models continue to be the preferred tool for practical computations. We believed that a symposium which would reaffirm the practical and scientific importance of turbulence modeling was both necessary and timely."
Despite the fact that fluid dynamics and filtration through porous media and mathematics, there are classical research areas in engineering, physics, are still many industrial processes that require the study of new mathemat ical models for flows of particular complexity, due to the peculiar properties of the systems involved. The aim of this book is to provide a number of examples showing how frequently such situations arise in various branches of industrial technology. The selection of the subjects was motivated not only by their industrial rel evance and mathematical interest. What I had in mind was a collection of problems having a really distinctive character, thus bringing some fresh air into one of the oldest and most revered domains of applied mathematics. The incredible richness of nonstandard flow problems in industrial appli cations has always been, and still is, a constant surprise to me. Therefore I tried to offer a very large spectrum of subjects, with special attention devoted to those problems in which the modeling phase is far from being obvious, and the mathematical content is absolutely nontrivial. With such a view to diversity, topics have been selected from a variety of sources (such as glass industry, polymers science, coffee brewing, fuels pipelining), and contributors from different backgrounds (mathematics, physics, chemical engineering) have been included. Consequently, the mathematical nature of the problems formulated spans over a large range, so that their theoret ical investigation and numerical computation require a variety of different techniques." |
![]() ![]() You may like...
Turbulence and Interactions - Keynote…
Michel Deville, Thien-Hiep Le, …
Hardcover
R5,863
Discovery Miles 58 630
The Origin of Turbulence in Near-Wall…
A.V. Boiko, Genrih R Grek, …
Hardcover
R4,731
Discovery Miles 47 310
Statistical Treatment of Turbulent…
J.S. Shrimpton, S. Haeri, …
Hardcover
Rheology Modifiers Handbook - Practical…
David D Braun, Meyer R. Rosen
Hardcover
R10,988
Discovery Miles 109 880
New trends in turbulence. Turbulence…
M. Lesieur, Akiva M. Yaglom, …
Hardcover
R6,232
Discovery Miles 62 320
Rheological Fundamentals of Polymer…
J.A. Covas, J-F. Agassant, …
Hardcover
R13,405
Discovery Miles 134 050
Direct and Large-Eddy Simulation IV
Bernard Geurts, Rainer Friedrich, …
Hardcover
R6,201
Discovery Miles 62 010
|