![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Energy technology & engineering > Fossil fuel technologies
First-generation ethanol plants were designed based on corn (maize grain), a dense, stable, storable and shippable commodity-type product with multiple applications. With these properties, corn was used as a feedstock for large-scale biorefineries without any challenges for a considerable length of time to allow its usage to grow exponentially. In the second-generation biofuels, the feedstocks used are low-cost carbon resources such as crop and forest residues and municipal solid waste. These materials are not dense; they have irregular size and shape, variable moisture, and are not readily storable and shippable. When the industry tested these feedstocks for biofuel production, they faced flowability, storage, transportation, and conversion issues. One way to overcome feeding, handling, transportation, and variable moisture challenges is to densify the biomass. The densification systems such as pellet mill and briquette press are commonly used to produce densified products. The densified products have uniform size, shape, and higher density. Also, the densified products are aerobically stable as they have the moisture of less than 10 % (w.b.).This book's focus is to understand how the densification process variables, biomass types and their blends, mechanical preprocessing, and thermal and chemical pretreatment methods impact the quality of the densified products produced for biofuel production.
This book is concerned with the prediction of thermodynamic and transport properties of gases and liquids. The prediction of such properties is essential for the solution of many problems encountered in chemical and process engineering as well as in other areas of science and technology. The book aims to present the best of those modern methods which are capable of practical application. It begins with basic scientific principles and formal results which are subsequently developed into practical methods of prediction. Numerous examples, supported by a suite of computer programmes, illustrate applications of the methods. The book is aimed primarily at the student market (for both undergraduate and taught postgraduate courses) but it will also be useful for those engaged in research and for chemical and process engineering professionals.
This Fourth Edition brings the reader up to date on gas technologies and equipment that have evolved since the Third Edition was published in 1990. It is both a comprehensive overview and a source reference for supplementary data on every aspect of handling gases in compressed, liquefied, and cryogenic forms. Properties, safety considerations, equipment, and regulations relevant to compressed gases are all addressed. The Fourth Edition gives information relating to current standards from the various standards developing organizations in the field, as well as the latest shipping requirements, storage and handling procedures and uses. The Fourth Edition of Handbook of Compressed Gases is the only compressed gas reference that combines gas-specific information on 66 compressed gases, including physical constants, handling, storage and transportation, and safety requirements as well as comprehensive, detailed information on valves and pressure relief devices, cylinder maintenance, bulk containers and transportation, and oxygen cleaning. The handbook has been reformatted to present information in a more ordered, logical sequence, using specific labeling and marking information to make the Fourth Edition even more useful than its predecessor. This new edition includes: The latest changes in DOT regulations (HM-206, HM-215A, HM-215B), Exposure limits set by ACGIH and OSHA which have been reviewed and updated, New developments in safety equipment, along with the latest training requirements to mitigate a compressed gas incident. Since this handbook is not product-specific, it contains coverage of gases across the spectrum of the industry - not just those produced by one manufacturer. It is aready source of useful information on natural gases, refrigerants, medical gases, atmospheric gases, and equipment and systems for oxygen service. All professionals whose work includes the manufacture, handling, or use of gas will find the Fourth Edition of Handbook of Compressed Gases extremely valuable. It serves the needs of engineers, technicians, researchers, maintenance personnel, health specialists, transportation directors, purchasing agents, hazardous materials officials, and chemical handlers.
Constantly in the news and the subject of much public debate, fracking, as it is known for short, is one of the most promising yet controversial methods of extracting natural gas and oil. Today, 90 percent of natural gas wells use fracking. Though highly effective, the process-which fractures rock with pressurized fluid-has been criticized for polluting land, air, and water, and endangering human health. A timely addition to Oxford's What Everyone Needs to Know series, Hydrofracking tackles this contentious topic, exploring both sides of the debate and providing a clear guide to the science underlying the technique. In concise question-and-answer format, Alex Prud'homme cuts through the maze of opinions and rhetoric to uncover key points, from the economic and political benefits of fracking to the health dangers and negative effects on the environment. Prud'homme offers clear answers to a range of fundamental questions, including: What is fracking fluid? How does it impact water supplies? Who regulates the industry? How much recoverable natural gas exists in the U.S.? What new innovations are on the horizon? Supporters as diverse as President Obama and the conservative billionaire T. Boone Pickens have promoted natural gas as a clean, "21st-century" fuel that will reduce global warming, create jobs, and provide tax revenues, but concerns remain, with environmental activists like Bill McKibben and others leading protests to put an end to fracking as a means of obtaining alternative energy. Prud'homme considers ways to improve methods in the short-term, while also exploring the possibility of transitioning to more sustainable resources-wind, solar, tidal, and perhaps nuclear power-for the long term. Written for general readers, Hydrofracking clearly explains both the complex science of fracking and the equally complex political and economic issues that surround it, giving readers all the information they need to understand what will no doubt remain a contentious issue for years to come.
First published in 1981 as the "Offshore Information Guide", this revised information resource details the technology of the oil, gas and marine industries. For this edition, the guide has been completely revised and substantially enlarged. With the assistance of staff from the Centre of Cold Ocean Resources Engineering, Memorial University of Newfoundland, Canada, the world-wide coverage has been much extended. Additional subject areas include new sections under the following headings: exploration, field development, petroleum reservoirs, economics and government.
Focusing on the key challenges that still impede the realization of the billion-ton renewable fuels vision, this book integrates technological development and business development rationales to highlight the key technological.developments that are necessary to industrialize biofuels on a global scale. Technological issues addressed in this work include fermentation and downstream processing technologies, as compared to current industrial practice and process economics. Business issues that provide the lens through which the technological review is performed span the entire biofuel value chain, from financial mechanisms to fund biotechnology start-ups in the biofuel arena up to large green field manufacturing projects, to raw material farming, collection and transport to the bioconversion plant, manufacturing, product recovery, storage, and transport to the point of sale. Emphasis has been placed throughout the book on providing a global view that takes into account the intrinsic characteristics of various biofuels markets from Brazil, the EU, the US, or Japan, to emerging economies as agricultural development and biofuel development appear undissociably linked.
This book approaches the energy science sub-field carbon capture with an interdisciplinary discussion based upon fundamental chemical concepts ranging from thermodynamics, combustion, kinetics, mass transfer, material properties, and the relationship between the chemistry and process of carbon capture technologies. Energy science itself is a broad field that spans many disciplines -- policy, mathematics, physical chemistry, chemical engineering, geology, materials science and mineralogy -- and the author has selected the material, as well as end-of-chapter problems and policy discussions, that provide the necessary tools to interested students.
As the first and only comprehensive guide for engineers on downhole drilling tools, this is a must-have for the drilling community. "Downhole Drilling Tools" describes all the critical tools for the engineer and covers the practical aspects of downhole equipment. Going beyond the basic bottomhole assembly, this guide includes detailed mechanics and theory on tubulars, fishing, cementing, coiled tubing and various other downhole tools. A must have for both the engineering professional and student alike, this textbook includes worked examples and additional references at the end of each chapter. In its entirety, "Downhole Drilling Tools" enables the reader to recognize drilling benefits and limitations associated with each tool, find solutions to common drilling problems while reducing costs and perform successful well completions.
This book comprises research studies of novel work on combustion for sustainable energy development. It offers an insight into a few viable novel technologies for improved, efficient and sustainable utilization of combustion-based energy production using both fossil and bio fuels. Special emphasis is placed on micro-scale combustion systems that offer new challenges and opportunities. The book is divided into five sections, with chapters from 3-4 leading experts forming the core of each section. The book should prove useful to a variety of readers, including students, researchers, and professionals.
A practical and insightful discussion of time-frequency analysis methods and technologies Time-frequency analysis of seismic signals aims to reveal the local properties of nonstationary signals. The local properties, such as time-period, frequency, and spectral content, vary with time, and the time of a seismic signal is a proxy of geologic depth. Therefore, the time-frequency spectrum is composed of the frequency spectra that are generated by using the classic Fourier transform at different time positions. Different time-frequency analysis methods are distinguished in the construction of the local kernel prior to using the Fourier transform. Based on the difference in constructing the Fourier transform kernel, this book categorises time-frequency analysis methods into two groups: Gabor transform-type methods and energy density distribution methods. This book systematically presents time-frequency analysis methods, including technologies which have not been previously discussed in print or in which the author has been instrumental in developing. In the presentation of each method, the fundamental theory and mathematical concepts are summarised, with an emphasis on the engineering aspects. This book also provides a practical guide to geophysicists who attempt to generate geophysically meaningful time-frequency spectra, who attempt to process seismic data with time-dependent operations for the fidelity of nonstationary signals, and who attempt to exploit the time-frequency space seismic attributes for quantitative characterisation of hydrocarbon reservoirs.
Papers presented at the First and Second IGT Symposium, Chicago, IL, USA, 26-28 August 1985 and 30 April-2 May 1986.
This book introduces a new and powerful approach based on rigorous process simulations conducted with professional simulators like HYSYS to predict the performance of supersonic separators (SS). The book addresses the utilization of SSs for the offshore processing of CO2-rich natural gas as an alternative to Joule-Thomson expansion, glycol absorption, membrane permeation and chemical absorption. It describes and analyzes the conventional offshore processing of CO2-rich natural gas, discussing the advantages of SS in terms of cost and power consumption. The book offers a comprehensive framework for modeling SS units, describing the physical principles of SS in detail. The thermodynamic multiphase sound speed is also discussed at the light shed by a classical analysis based on the Landau Model of phase transitions. A complete framework is presented for modelling and simulating SS units within HYSYS environment. A special chapter is dedicated to the performance of SSs for removing CO2 from CO2-rich natural gas, taking into account the limitations of CO2 freeze-out in various scenarios of gas feed in terms of CO2 content, pressure and temperature.
The Politics of Energy Research and Development examines and evaluates U.S. research and development policies to promote nuclear, solar, conservation, and other technology options. This volume is the third in the series "Energy Policy Studies, "which explores fundamental, long-term social, political, and economic dimensions of energy technology, resources, and use. Contributions represent a wide range of theoretical and policy perspectives, including sociology, economics, political science, urban and regional studies, environmental analysis, and history and philosophy of technology. Contents: Richard L. Ottinger, "Introduction: The Tragedy of U.S. Energy R&D Policy"; Amor DEGREES B. Lovins, "The Origins of the Nuclear Power Fiasco"; Richard T. Sylves, "Nuclear Exotica: Peaceful Use of Nuclear Explosives"; Eugene Frankel, "Technology, Politics and Ideology: The Vicissitudes of Federal Solar Energy Policy, 1974-1983"; Maxine Savitz, "The Federal Role in Conservation Research and Development"; J. David Roessner, "Commercialization Issues in Energy Technology Policy"; John Byrne and Daniel Rich, "In Search of the Abundant Energy Machine"; and Grant P. Thompson, "Energy Policy in the Interim: Waiting for the Next Shoe to Drop."
This short monograph focuses on the theoretical backgrounds and practical implementations concerning the thermodynamic modeling of multiphase equilibria of complex reservoir fluids using cubic equations of state. It aims to address the increasing needs of multiphase equilibrium calculations that arise in the compositional modeling of multiphase flow in reservoirs and wellbores. It provides a state-of-the-art coverage on the recent improvements of cubic equations of state. Considering that stability test and flash calculation are two basic tasks involved in any multiphase equilibrium calculations, it elaborates on the rigorous mathematical frameworks dedicated to stability test and flash calculation. A special treatment is given to the new algorithms that are recently developed to perform robust and efficient three-phase equilibrium calculations. This monograph will be of value to graduate students who conduct research in the field of phase behavior, as well as software engineers who work on the development of multiphase equilibrium calculation algorithms.
This book explains the modelling and simulation of thermal power plants, and introduces readers to the equations needed to model a wide range of industrial energy processes. Also featuring a wealth of illustrative, real-world examples, it covers all types of power plants, including nuclear, fossil-fuel, solar and biomass. The book is based on the authors' expertise and experience in the theory of power plant modelling and simulation, developed over many years of service with EDF. In more than forty examples, they demonstrate the component elements involved in a broad range of energy production systems, with detailed test cases for each chemical, thermodynamic and thermo-hydraulic model. Each of the test cases includes the following information: * component description and parameterization data; * modelling hypotheses and simulation results; * fundamental equations and correlations, with their validity domains; * model validation, and in some cases, experimental validation; and * single-phase flow and two-phase flow modelling equations, which cover all water and steam phases. A practical volume that is intended for a broad readership, from students and researchers, to professional engineers, this book offers the ideal handbook for the modelling and simulation of thermal power plants. It is also a valuable aid in understanding the physical and chemical phenomena that govern the operation of power plants and energy processes.
This book brings together the state-of-the-art in energy and resources research. It covers wind, solar, hydro and geothermal energy, as well as more conventional power generation technologies, such as internal combustion engines. Related areas of research such as the environmental sciences, carbon dioxide emissions, and energy storage are also addressed.
This volume discusses how plant and algae organisms play a pivotal role in the transformation of solar energy to essential metabolites, and explores the numerous beneficial roles these metabolites have at an industrial level. It presents information on the utilization of plant and algae for biomass production, and shows how this is a practical option for large scale biofuel production. The book examines how these bio-metabolites can then be used to extract biofuel. Biomass produced from plants and algae can act as the source of feedstock for biofuel production and industrially important compounds. This book also explores that by curtailing culturing cost using wastewater, seawater, and industrial water as a nutrient and water source, biomass becomes an economical energy source. The introductory chapters of the book focus on the appreciative values of a pollution-free atmosphere, with special reference to enhanced greenhouse effect, and then are followed by chapters on the potential of plant and algae as a liquid energy resource. This book targets researchers, graduate students, and energy and fuel industry professionals interested in the plant sciences, biotechnology and renewable energy.
This book concisely describes the architecture of the oil and gas pipelines in the Black-Caspian Seas Region and analyzes the status quo and perspectives of oil and gas production in this region. The authors present numerous projects, each of which has made a substantial contribution to the development of pipeline transport and transit in this part of the world, and discuss them in detail. The topics covered include: the region's geographic characteristics; the region's hydrocarbon potential; Russian and EU policy on pipeline transport; Kazakhstan's pipeline policy; Chinese pipeline projects; the Bulgarian gas transmission system; environmental risks in the production and transportation of hydrocarbons; satellite monitoring; and subsea leak detection. This volume offers a valuable resource for politicians, specialists in the oil and gas business, decision-makers, and environmentalists alike.
This book analyzes hydrocarbon generation and accumulation within space-limited source rocks. The authors draw conclusions based on the principles of basin formation, hydrocarbon generation and accumulation, coupled with the practice of terrigenous basins in eastern China. Hydrocarbon generation and expulsion have been quantitatively assessed in space-limited source rock systems. This book explores new hydrocarbon generation and expulsion models to reflect real geological situations more accurately. The theory and practice proposed in this book challenge the traditional theory of kerogen thermal degradation and hydrocarbon generation.
The Palgrave Handbook of Natural Gas and Global Energy Transitions provides an in-depth and authoritative examination of the transformative implications of the ongoing global energy transitions for natural gas markets across the world. With case studies from Africa, Asia, Europe, North America, Latin America, South America, Australia, and the Middle East, the volume introduces readers to the latest legal, policy, technological, and fiscal innovations in natural gas markets in response to ongoing global energy transitions. It outlines the risk mitigation strategies and contractual techniques - focusing on resilience planning, low-carbon business models, green procurement, climate-smart infrastructure development, accountability, gender justice, and other sustainability safeguards - that are required to maximize the full value of natural gas as a catalyst for a just and equitable energy transition and for energy security across the world. Written in an accessible style, this book outlines the guiding principles for a responsible and low-carbon approach to the design, financing, and implementation of natural gas development and commercialization. It is an indispensable text and reference work for students, scholars, practitioners, and stakeholders in natural gas, energy, infrastructure, and environmental investments and projects.
This volume, The Science of Algal Fuels (volume 25 of COLE), contains 26 chapters dealing with biofuels contributed by experts from numerous countries and covers several aspects of algal products, one being "oilgae from algae," mainly oils and fuels for engines. Among the prominent algal groups that participate in this process are the diatoms and green algae (Chlorophyceae). Their metabolism and breeding play an important role in biomass and extraction of crude oil and algal fuel. There is a strong relation between solar energy influencing algal culture and the photobiology of lipid metabolism. Currently, many international meetings and conferences on biofuel are taking place in many countries, and several new books and proceedings of conferences have appeared on this topic. All this indicates that this field is "hot" and in the forefront of applied bioscience.
This book highlights the importance of Facilitated Transport Membranes (FTMs) for the application of carbon capture, covering its introduction, gas transport phenomena and models, reaction mechanisms, industrial applications such as bio-gas upgradation, flue gas separation, hydrogen gas and natural gas purification, fabrication methods of both FTMs and their carrier mediums, testing/characterization techniques, techno-analysis with up-to-date trends and the future outlooks. Climate change and environmental impacts are resulted due to greenhouse gases, particularly CO2. The industrial revolution is currently causing the augmented emission of greenhouse gases. Therefore, various technologies are being looked at to overcome these problems. In which, membrane technology is key among them and is envisaged for many industrial applications, especially for gas separations and carbon capture. Considering this, FTMs are being actively investigated due to their remarkable gas separation performance. This book describes the working principle of FTMs and includes case studies to explore their impact on different industrial applications. Also, the book highlights how FTMs are reshaping science to capture CO2 for reducing climate and environmental impacts. |
![]() ![]() You may like...
Cross-Disciplinary Uses of Gamification…
Oscar Bernardes, Vanessa Amorim, …
Hardcover
R9,088
Discovery Miles 90 880
3D Point Cloud Analysis - Traditional…
Shan Liu, Min Zhang, …
Hardcover
R3,529
Discovery Miles 35 290
Intelligent Learning for Computer Vision…
Harish Sharma, Mukesh Saraswat, …
Hardcover
R7,546
Discovery Miles 75 460
Similarity and Compatibility in Fuzzy…
Valerie V. Cross, Thomas A. Sudkamp
Hardcover
R3,154
Discovery Miles 31 540
Visual Control of Wheeled Mobile Robots…
Hector M. Becerra, Carlos Sagues
Hardcover
R4,188
Discovery Miles 41 880
Visual Computing for Cultural Heritage
Fotis Liarokapis, Athanasios Voulodimos, …
Hardcover
R5,047
Discovery Miles 50 470
|