![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Energy technology & engineering > Fossil fuel technologies
This book describes the scale and complexity of China's energy system, using Sankey diagrams to visualize the energy flows across the economy and categorizing the differences between provinces. China's provinces extend over a vast area and are at different stages of economic development. Regional planning and inter-regional optimization will be essential for planning a future infrastructure that will allow China as a whole to optimize and avoid overcapacity and inefficiency. In this context, it introduces a new energy systems modeling approach and demonstrates its application in the power sector. This power model can help optimize the overall design of the power system and reveal how different future investment choices, e.g. natural gas fired power, only emerge when details such as regional, seasonal and diurnal demand factors are considered. Lastly, it looks at options for mitigating carbon and the major role that renewables & natural gas could play, as well as carbon pricing.
This book presents the proceedings of the 4th International Conference on Integrated Petroleum Engineering and Geosciences 2016 (ICIPEG 2016), held under the banner of World Engineering, Science & Technology Congress (ESTCON 2016) at Kuala Lumpur Convention Centre from August 15 to 17, 2016. It presents peer-reviewed research articles on exploration, while also exploring a new area: shale research. In this time of low oil prices, it highlights findings to maintain the exchange of knowledge between researchers, serving as a vital bridge-builder between engineers, geoscientists, academics, and industry.
The two volumes of Handbook of Gas Sensor Materials provide a detailed and comprehensive account of materials for gas sensors, including the properties and relative advantages of various materials. Since these sensors can be applied for the automation of myriad industrial processes, as well as for everyday monitoring of such activities as public safety, engine performance, medical therapeutics, and in many other situations, this handbook is of great value. Gas sensor designers will find a treasure trove of material in these two books.
This book provides technical data and information on unconventional- and inactive energy sources. After reviewing the current global energy situation, individual chapters discuss fossil fuel sources and renewable energy sources. It focuses on future energy systems and explores renewable energy scenarios including water energy and power, biofuels and algae energy. It also provides essential information on energy from inactive sources, energy from waste materials and the optimization of energy systems.
This book discusses the progress that is being made through innovations in instrumental measurements of geologic and geochemical systems and their study using modern mathematical modeling. It covers the systems approach to understanding sedimentary rocks and their role in evolution and containment of subsurface fluids.
This book analyses the deep interaction between the world s environmental crises, energy production, conversion and use, and global regulation policies. Bringing together experts from a wide range of scientific fields, it offers the reader a broad scope of knowledge on such topics as: climate change and exhaustion of resources the relationship between basic science and the development of sustainable energy technologies the relationship between global and local environmental policiesthe possible competition between foodstuff production and that of agro-fuels urban adaptation negotiations at the international level financial rules This book invites the reader to consider the multidisciplinary aspects of these urgent energy/environmental issues. "
The assessment of greenhouse gases emitted to and removed from the atmosphere is high on the international political and scientific agendas. Growing international concern and cooperation regarding the climate change problem have increased the need for policy-oriented solutions to the issue of uncertainty in, and related to, inventories of greenhouse gas (GHG) emissions. The approaches to addressing uncertainty discussed here reflect attempts to improve national inventories, not only for their own sake but also from a wider, systems analytical perspective - a perspective that seeks to strengthen the usefulness of national inventories under a compliance and/or global monitoring and reporting framework. These approaches demonstrate the benefits of including inventory uncertainty in policy analyses. The authors of the contributed papers show that considering uncertainty helps avoid situations that can, for example, create a false sense of certainty or lead to invalid views of subsystems. This may eventually prevent related errors from showing up in analyses. However, considering uncertainty does not come for free. Proper treatment of uncertainty is costly and demanding because it forces us to make the step from "simple to complex" and only then to discuss potential simplifications. Finally, comprehensive treatment of uncertainty does not offer policymakers quick and easy solutions.
A timely, hands-on guide to environmental issues and regulatory
standards for the petroleum industry
This book addresses the feasibility of CO2-EOR and sequestration in a mature Indian oil field, pursuing for the first time a cross-disciplinary approach that combines the results from reservoir modeling and flow simulation, rock physics modeling, geomechanics, and time-lapse (4D) seismic monitoring study. The key findings presented indicate that the field under study holds great potential for enhanced oil recovery (EOR) and subsequent CO2 storage. Experts around the globe argue that storing CO2 by means of enhanced oil recovery (EOR) could support climate change mitigation by reducing the amount of CO2 emissions in the atmosphere by ca. 20%. CO2-EOR and sequestration is a cutting-edge and emerging field of research in India, and there is an urgent need to assess Indian hydrocarbon reservoirs for the feasibility of CO2-EOR and storage. Combining the fundamentals of the technique with concrete examples, the book is essential reading for all researchers, students and oil & gas professionals who want to fully understand CO2-EOR and its geologic sequestration process in mature oil fields.
For the practitioner, this volume is a valuable tool for predicting
reservoir flow in the most efficient and profitable manner
possible, using quantitative methods rather than anecdotal and
outdated methods. For the student, this volume offers insight not
covered in other textbooks.
Reserves Estimation for Geopressured Gas Reservoirs aims to introduce the principles and methods for calculating reserves of geopressured gas reservoirs with the material balance method, presenting advantages, disadvantages and applicable conditions of various methods. The book, based on manual analysis, explains methods and calculation steps with more than 30 gas reservoir examples. It will help gas reservoir engineers learn basic principles and calculation methods and familiarize themselves with the content of the software Black Box, which in turn helps improve the level of gas field performance analysis and the level of gas field development.
Energy comes in many shapes and forms, from wind, solar power, geothermal, and biomass to coal, natural gas, and petroleum. The energy we consume is constantly changing, but the use of these resources-whether renewable or nonrenewable-has long-term impacts on our planet. While there has been this recent shift to renewable energy within the United States, the worldwide demand for all energy types continues to increase at a rapid rate. In fact, it has increased by 84% over the past twenty years. Despite their dwindling supply, these resources are still heavily relied on today. Coal still accounts for 30% of the electricity generated by the United States, even though natural gas is now the primary energy used to produce electricity. Likewise, only 7% of electricity usage worldwide is linked to solar and wind energy. In The Changing Energy Mix, Paul F. Meier compares twelve renewable and nonrenewable energy types using twelve common technical criteria. These criteria span projected reserves, cost to the consumer and supplier, energy balances, environmental issues, land area required, and lasting impacts. While explaining the pros and cons of these resources, Meier takes readers through the history of energy in the United States and world. He provides insight into energy sources, such as wind-powered and solar-powered electricity (which did not exist until the mid and late 80s, respectively), and he explains the constantly evolving world of energy. Breaking down the potential promises and struggles of transitioning to a more renewable energy-based economy, Meier explains the positive and negative implications of these various sources of energy. The resulting book equips readers with a unique understanding of the history, availability, technology, implementation cost, and concerns of renewable and nonrenewable energy.
This book presents a concise framework for assessing technical and sustainability impacts of existing biorefineries and provides a possible road map for development of novel biorefineries. It offers a detailed, integrated approach to evaluate the entire biomass production chain, from the agricultural feedstock production and transportation, to the industrial conversion and commercialization & use of products. The Brazilian sugarcane biorefinery is used as a case study; however, the methods and concepts can be applied to almost any biomass alternative. Chapters explore the main issues regarding biorefinery assessment, including feedstock production and transportation modeling, biofuels and green chemistry products, as well as assessment of sustainability impacts. This book is a valuable source of information to researchers in bioenergy, green chemistry and sustainability fields. It also provides a useful framework for government agencies, investors and the energy industry to evaluate and predict the success of current and future biorefinery alternatives.
Coalbed gas has been considered a hazard since the early 19th century when the first mine gas explosions occurred in the United States in 1810 and France in 1845. In eastern Australia methane-related mine disasters occurred late in the 19th century with hundreds of lives lost in New South Wales, and as recently as 1995 in Queensland's Bowen Basin. Ventilation and gas drainage technologies are now in practice. However, coalbed methane recently is becoming more recognized as a potential source of energy; rather than emitting this gas to the atmosphere during drainage of gassy mines it can be captured and utilized. Both economic and environmental concerns have sparked this impetus to capture coalbed methane. The number of methane utilization projects has increased in the United States in recent years as a result, to a large extent, of development in technology in methane recovery from coal seams. Between 1994 and 1997, the number of mines in Alabama, Colorado, Ohio, Pennsylvania, Virginia, and West Virginia recovering and utilizing methane increased from 1 0 to 17. The Environmental Protection Agency estimates that close to 49 billion cubic feet (Bet) of methane was recovered in 1996, meaning that this amount was not released into the atmosphere. It is estimated that in the same year total emissions of methane equaled 45. 7 Bcf. Other coal mines are being investigated at present, many ofwhich appear to be promising for the development of cost-effective gas recovery.
An Introduction to Petroleum Reservoir Simulation is aimed toward graduate students and professionals in the oil and gas industry working in reservoir simulation. It begins with a review of fluid and rock properties and derivation of basic reservoir engineering mass balance equations. Then equations and approaches for numerical reservoir simulation are introduced. The text starts with simple problems (1D, single phase flow in homogeneous reservoirs with constant rate wells) and subsequent chapters slowly add complexities (heterogeneities, nonlinearities, multi-dimensions, multiphase flow, and multicomponent flow). Partial differential equations and finite differences are then introduced but it will be shown that algebraic mass balances can also be written directly on discrete grid blocks that result in the same equations. Many completed examples and figures will be included to improve understanding. An Introduction to Petroleum Reservoir Simulation is designed for those with their first exposure to reservoir simulation, including graduate students in their first simulation course and working professionals who are using reservoir simulators and want to learn more about the basics.
This book reports the results of exhaustive research work on modeling and control of vertical oil well drilling systems. It is focused on the analysis of the system-dynamic response and the elimination of the most damaging drill string vibration modes affecting overall perforation performance: stick-slip (torsional vibration) and bit-bounce (axial vibration). The text is organized in three parts. The first part, Modeling, presents lumped- and distributed-parameter models that allow the dynamic behavior of the drill string to be characterized; a comprehensive mathematical model taking into account mechanical and electric components of the overall drilling system is also provided. The distributed nature of the system is accommodated by considering a system of wave equations subject to nonlinear boundary conditions; this model is transformed into a pair of neutral-type time-delay equations which can overcome the complexity involved in the analysis and simulation of the partial differential equation model. The second part, Analysis, is devoted to the study of the response of the system described by the time-delay model; important properties useful for analyzing system stability are investigated and frequency- and time-domain techniques are reviewed. Part III, Control, concerns the design of stabilizing control laws aimed at eliminating undesirable drilling vibrations; diverse control techniques based on infinite--dimensional system representations are designed and evaluated. The control proposals are shown to be effective in suppressing stick-slip and bit-bounce so that a considerable improvement of the overall drilling performance can be achieved. This self-contained book provides operational guidelines to avoid drilling vibrations. Furthermore, since the modeling and control techniques presented here can be generalized to treat diverse engineering problems, it constitutes a useful resource to researchers working on control and its engineering application in oil well drilling.
This book had its genesis in a symposium on gas hydrates presented at the 2003 Spring National Meeting of the American Institute of Chemical Engineers. The symposium consisted of twenty papers presented in four sessions over two days. Additional guest authors were invited to provide continuity and cover topics not addressed during the symposium. Gas hydrates are a unique class of chemical compounds where molecules of one compound (the guest material) are enclosed, without bonding chemically, within an open solid lattice composed of another compound (the host material). These types of configurations are known as clathrates. The guest molecules, u- ally gases, are of an appropriate size such that they fit within the cage formed by the host material. Commonexamples of gas hydrates are carbon dioxide/water and methane/water clathrates. At standard pressure and temperature, methane hydrate contains by volume 180 times as much methane as hydrate. The United States Geological Survey (USGS) has estimated that there is more organic carbon c- tained as methane hydrate than all other forms of fossil fuels combined. In fact, methane hydrates could provide a clean source of energy for several centuries. Clathrate compounds were first discovered in the early 1800s when Humphrey Davy and Michael Faraday were experimenting with chlorine-water mixtures.
Conversion of Coal-Fired Power Plant to Cogeneration and Combined-Cycle presents the methodology, calculation procedures and tools used to support enterprise planning for adapting power stations to cogeneration and combined-cycle forms. The authors analyze the optimum selection of the structure of heat exchangers in a 370 MW power block, the structure of heat recovery steam generators and gas turbines. Conversion of Coal-Fired Power Plant to Cogeneration and Combined-Cycle also addresses the problems of converting existing power plants to dual-fuel gas-steam combined-cycle technologies coupled with parallel systems. Conversion of Coal-Fired Power Plant to Cogeneration and Combined-Cycle is an informative monograph written for researchers, postgraduate students and policy makers in power engineering.
The book adopts an application-oriented approach for ecorestoration of coalmine degraded. The theoretical aspects of ecorestoration, and steps involved in ecorestoration process and experimental aspects of thorough analytical procedures have been discussed in detail. It emphasizes on the types of mining, land degradation, and biodiversity conservation while giving details of technical and biological steps, topsoil management, selection of plant species, seeding, nursery practices; adoption of innovative approaches like mulching, biofertlizer application, hydroseeding, superabsorbent; use of grass-legume mix; monitoring and aftercare of reclaimed sites; the indicators of sustainable ecorestoration; and Rules and Acts implemented and followed across the world. Best ecorestoration practices, mine closure issues, collection, laboratory analysis and interpretation of minesoil and topsoil samples, monitoring biological parameters, litterfall and tree growth analysis, erosion management, design of drainage and sedimentation retention basin, and brief description of tree species with identifying character for field people are all part of the book. [Message by Prominent Academician] It is now urgent that methods of coal mining be integrated with engineering for ecorestoration because the larger society will not accept devastated waste land. A book, coming out from the hands of one of the persistent researchers of the field, cannot be more timely. Jayanta Bhattacharya, PhD FNAE Professor, Department of Mining Engineering Indian Institute of Technology, Kharagpur-721302, India. |
You may like...
Sustainable Geoscience for Natural Gas…
David Wood, Jianchao Cai
Paperback
R3,955
Discovery Miles 39 550
Internal Combustion Engines…
Institution of Mechanical Engineers
Paperback
R4,908
Discovery Miles 49 080
Solid Fuel Blending - Principles…
David Tillman, Dao Duong, …
Hardcover
R2,074
Discovery Miles 20 740
Ultra-Supercritical Coal Power Plants…
Dongke Zhang Ftse
Hardcover
Challenges and Recent Advances in…
Sanket Joshi, Prashant Jadhawar, …
Paperback
R3,507
Discovery Miles 35 070
Education and Training for the Oil and…
Phil Andrews, Jim Playfoot
Hardcover
R2,056
Discovery Miles 20 560
|