![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Energy technology & engineering > Fossil fuel technologies
The assessment of greenhouse gases emitted to and removed from the atmosphere is high on the international political and scientific agendas. Growing international concern and cooperation regarding the climate change problem have increased the need for policy-oriented solutions to the issue of uncertainty in, and related to, inventories of greenhouse gas (GHG) emissions. The approaches to addressing uncertainty discussed here reflect attempts to improve national inventories, not only for their own sake but also from a wider, systems analytical perspective - a perspective that seeks to strengthen the usefulness of national inventories under a compliance and/or global monitoring and reporting framework. These approaches demonstrate the benefits of including inventory uncertainty in policy analyses. The authors of the contributed papers show that considering uncertainty helps avoid situations that can, for example, create a false sense of certainty or lead to invalid views of subsystems. This may eventually prevent related errors from showing up in analyses. However, considering uncertainty does not come for free. Proper treatment of uncertainty is costly and demanding because it forces us to make the step from "simple to complex" and only then to discuss potential simplifications. Finally, comprehensive treatment of uncertainty does not offer policymakers quick and easy solutions.
This book analyses the deep interaction between the world s environmental crises, energy production, conversion and use, and global regulation policies. Bringing together experts from a wide range of scientific fields, it offers the reader a broad scope of knowledge on such topics as: climate change and exhaustion of resources the relationship between basic science and the development of sustainable energy technologies the relationship between global and local environmental policiesthe possible competition between foodstuff production and that of agro-fuels urban adaptation negotiations at the international level financial rules This book invites the reader to consider the multidisciplinary aspects of these urgent energy/environmental issues. "
Reserves Estimation for Geopressured Gas Reservoirs aims to introduce the principles and methods for calculating reserves of geopressured gas reservoirs with the material balance method, presenting advantages, disadvantages and applicable conditions of various methods. The book, based on manual analysis, explains methods and calculation steps with more than 30 gas reservoir examples. It will help gas reservoir engineers learn basic principles and calculation methods and familiarize themselves with the content of the software Black Box, which in turn helps improve the level of gas field performance analysis and the level of gas field development.
The proposed book focuses on one of the most important issues affecting humankind in this century - Peak Oil or the declining availability of abundant, cheap energy-and its effects on our industrialized economy and wildlife conservation. Energy will be one of the defining issues of the 21st Century directly affecting wildlife conservation wherever energy extraction is a primary economic activity and indirectly through deepening economic recessions. Since cheap, abundant energy has been at the core of our industrial society, and has resulted in the technological advancements we enjoy today, the peak in world oil extraction would potentially have major impacts on civilization unless we prepare well in advance. One potential economic solution covered in the book would be a Steady State Economy with a stable population and per capita consumption, particularly in such industrialized countries as the United States. Furthermore, the lack of cheap, abundant energy directly and indirectly affects conservation efforts by professional societies and federal and state agencies, and NGOs concerned with wildlife issues. We need to recognize these potential problems and prepare, as much as possible, for the consequences stemming from them.
This book addresses the feasibility of CO2-EOR and sequestration in a mature Indian oil field, pursuing for the first time a cross-disciplinary approach that combines the results from reservoir modeling and flow simulation, rock physics modeling, geomechanics, and time-lapse (4D) seismic monitoring study. The key findings presented indicate that the field under study holds great potential for enhanced oil recovery (EOR) and subsequent CO2 storage. Experts around the globe argue that storing CO2 by means of enhanced oil recovery (EOR) could support climate change mitigation by reducing the amount of CO2 emissions in the atmosphere by ca. 20%. CO2-EOR and sequestration is a cutting-edge and emerging field of research in India, and there is an urgent need to assess Indian hydrocarbon reservoirs for the feasibility of CO2-EOR and storage. Combining the fundamentals of the technique with concrete examples, the book is essential reading for all researchers, students and oil & gas professionals who want to fully understand CO2-EOR and its geologic sequestration process in mature oil fields.
This book is a compilation of selected papers from the 4th International Petroleum and Petrochemical Technology Conference (IPPTC 2020). The proceedings focus on Static & Dynamic Reservoir Evaluation and Management; Drilling, Production and Oilfield Chemistry; Storage, Transportation and Flow Assurance; Refinery and Petrochemical Engineering; Machinery, Materials and Corrosion Protection. The conference not only provides a platform to exchanges experience, but also promotes the development of scientific research in oil & gas exploration and production. The main audience for the work includes industry experts, leading engineers, researchers and technical managers as well as university scholars.
A timely, hands-on guide to environmental issues and regulatory
standards for the petroleum industry
This book is both a review and a look to the future, highlighting challenges for better predicting quantitatively the impact of diagenesis on reservoir rocks. Classical diagenesis studies make use of a wide range of descriptive analytical techniques to explain specific, relatively time-framed fluid-rock interaction processes, and deduce their impacts on reservoir rocks. Future operational workflows will consist of constructing a conceptual diagenesis model, quantifying the related diagenetic phases, and modelling the diagenetic processes. Innovative approaches are emerging for applied quantitative diagenesis, providing numerical data that can be used by reservoir engineers as entry (input) data, and for validating results of numerical simulations. Geometry-based, geostatistical and geochemical modelling do not necessarily mimic natural processes, they rather provide reasonable solutions to specific problems.
An Introduction to Petroleum Reservoir Simulation is aimed toward graduate students and professionals in the oil and gas industry working in reservoir simulation. It begins with a review of fluid and rock properties and derivation of basic reservoir engineering mass balance equations. Then equations and approaches for numerical reservoir simulation are introduced. The text starts with simple problems (1D, single phase flow in homogeneous reservoirs with constant rate wells) and subsequent chapters slowly add complexities (heterogeneities, nonlinearities, multi-dimensions, multiphase flow, and multicomponent flow). Partial differential equations and finite differences are then introduced but it will be shown that algebraic mass balances can also be written directly on discrete grid blocks that result in the same equations. Many completed examples and figures will be included to improve understanding. An Introduction to Petroleum Reservoir Simulation is designed for those with their first exposure to reservoir simulation, including graduate students in their first simulation course and working professionals who are using reservoir simulators and want to learn more about the basics.
IoT for Smart Operations in the Oil and Gas Industry elaborates on how the synergy between state-of-the-art computing platforms, such as Internet of Things (IOT), cloud computing, artificial intelligence, and, in particular, modern machine learning methods, can be harnessed to serve the purpose of a more efficient oil and gas industry. The reference explores the operations performed in each sector of the industry and then introduces the computing platforms and smart technologies that can enhance the operation, lower costs, and lower carbon footprint. Safety and security content is included, in particular, cybersecurity and potential threats to smart oil and gas solutions, focusing on adversarial effects of smart solutions and problems related to the interoperability of human-machine intelligence in the context of the oil and gas industry. Detailed case studies are included throughout to learn and research for further applications. Covering the latest topics and solutions, IoT for Smart Operations in the Oil and Gas Industry delivers a much-needed reference for the engineers and managers to understand modern computing paradigms for Industry 4.0 and the oil and gas industry.
For the practitioner, this volume is a valuable tool for predicting
reservoir flow in the most efficient and profitable manner
possible, using quantitative methods rather than anecdotal and
outdated methods. For the student, this volume offers insight not
covered in other textbooks.
This book focuses on the fundamental principles and latest research findings in hydrogen energy fields including: hydrogen production, hydrogen storage, fuel cells, hydrogen safety, economics, and the impact on society. Further, the book introduces the latest development trends in practical applications, especially in commercial household fuel cells and commercial fuel cell vehicles in Japan. This book not only helps readers to further their basic knowledge, but also presents the state of the art of hydrogen-energy-related research and development. This work serves as an excellent reference for beginners such as graduate students, as well as a handbook and systematic summary of entire hydrogen-energy systems for scientists and engineers.
Deepwater Sedimentary Systems: Science, Discovery and Applications helps readers identify, understand and interpret deepwater sedimentary systems at various scales - both onshore and offshore. This book describes the best practices in the integration of geology, geophysics, engineering, technology and economics used to inform smart business decisions in these diverse environments. It draws on technical results gained from deepwater exploration and production drilling campaigns and global field analog studies. With the multi-decadal resilience of deepwater exploration and production and the nature of its inherent uncertainty, this book serves as the essential reference for companies, consultancies, universities, governments and deepwater practitioners around the world seeking to understand deepwater systems and how to explore for and produce resources in these frontier environments. From an academic perspective, readers will use this book as the primer for understanding the processes, deposits and sedimentary environments in deep water - from deep oceans to deep lakes. This book provides conceptual approaches and state-of-the-art information on deepwater systems, as well as scenarios for the next 100 years of human-led exploration and development in deepwater, offshore environments. The students taught this material in today's classrooms will become the leaders of tomorrow in Earth's deepwater frontier. This book provides a broad foundation in deepwater sedimentary systems. What may take an individual dozens of academic and professional courses to achieve an understanding in these systems is provided here in one book.
This book provides climate students with the basic scientific background to climate change management. Students will learn about international and national approaches to climate change management defined in voluntary initiatives as well as in national law and international agreements. The book describes mitigation and adaptation measures, monitoring and reporting of greenhouse gas emissions, and strategies for achieving a low-carbon economy, including green finance. This book combines theory and practice, introducing students to the conceptual background but also taking a professional and technical approach with case studies and low carbon toolkits. Filled with didactic elements such as concept schemes, tables, charts, figures, examples, as well as questions and answers at the end of the chapters, this book aims to engage critical thinking and the discussion of important topics of our days. The low-carbon strategy is one of the answers to limiting the greenhouse effect on our planet. This strategy is to minimize the overall carbon consumption in the life cycle of the products we consume, from the extraction of raw materials to the end of their life. The future is being built today. This book will guide its readers along the path of imagining and realizing a low-carbon economy."
This book discusses current challenges in Japan, focusing on the nation's rapidly aging population and low birth rate, along with persistent public bond issues with heavy interest payments, the potential collapse of social security systems, and income inequality, as well as the global picture. In turn, it examines the accessibility of global fossil fuels and feasibility of large-scale solar energy use. A new theory of money, interest, and capital is put forward, together with a proposal for an alternative system of international monetary cooperation, to promote a more sustainable and equitable world. Specific topics discussed include * the inverted population pyramid, due to the dramatic change in human life spans and declining birth rates; * the rapidly shrinking workforce, aging population, and declining GDP share sourced from industry; * disproportionate debt expansion due to public bond issues and coping with a persistent budget deficit; * the potential collapse of social security systems combined with income inequality; and * how to mitigate these bio-economic predicaments. Global Energy Sources offers an essential guide for policymakers, economists, researchers, and all those concerned with establishing a sustainable and equitable society from both energy and monetary perspectives. Further, it will be of interest to readers around the world, as the lessons learned from Japan are crucial to other developed societies that may eventually face the same types of challenge.
Coalbed gas has been considered a hazard since the early 19th century when the first mine gas explosions occurred in the United States in 1810 and France in 1845. In eastern Australia methane-related mine disasters occurred late in the 19th century with hundreds of lives lost in New South Wales, and as recently as 1995 in Queensland's Bowen Basin. Ventilation and gas drainage technologies are now in practice. However, coalbed methane recently is becoming more recognized as a potential source of energy; rather than emitting this gas to the atmosphere during drainage of gassy mines it can be captured and utilized. Both economic and environmental concerns have sparked this impetus to capture coalbed methane. The number of methane utilization projects has increased in the United States in recent years as a result, to a large extent, of development in technology in methane recovery from coal seams. Between 1994 and 1997, the number of mines in Alabama, Colorado, Ohio, Pennsylvania, Virginia, and West Virginia recovering and utilizing methane increased from 1 0 to 17. The Environmental Protection Agency estimates that close to 49 billion cubic feet (Bet) of methane was recovered in 1996, meaning that this amount was not released into the atmosphere. It is estimated that in the same year total emissions of methane equaled 45. 7 Bcf. Other coal mines are being investigated at present, many ofwhich appear to be promising for the development of cost-effective gas recovery.
This book presents a concise framework for assessing technical and sustainability impacts of existing biorefineries and provides a possible road map for development of novel biorefineries. It offers a detailed, integrated approach to evaluate the entire biomass production chain, from the agricultural feedstock production and transportation, to the industrial conversion and commercialization & use of products. The Brazilian sugarcane biorefinery is used as a case study; however, the methods and concepts can be applied to almost any biomass alternative. Chapters explore the main issues regarding biorefinery assessment, including feedstock production and transportation modeling, biofuels and green chemistry products, as well as assessment of sustainability impacts. This book is a valuable source of information to researchers in bioenergy, green chemistry and sustainability fields. It also provides a useful framework for government agencies, investors and the energy industry to evaluate and predict the success of current and future biorefinery alternatives.
This book reports the results of exhaustive research work on modeling and control of vertical oil well drilling systems. It is focused on the analysis of the system-dynamic response and the elimination of the most damaging drill string vibration modes affecting overall perforation performance: stick-slip (torsional vibration) and bit-bounce (axial vibration). The text is organized in three parts. The first part, Modeling, presents lumped- and distributed-parameter models that allow the dynamic behavior of the drill string to be characterized; a comprehensive mathematical model taking into account mechanical and electric components of the overall drilling system is also provided. The distributed nature of the system is accommodated by considering a system of wave equations subject to nonlinear boundary conditions; this model is transformed into a pair of neutral-type time-delay equations which can overcome the complexity involved in the analysis and simulation of the partial differential equation model. The second part, Analysis, is devoted to the study of the response of the system described by the time-delay model; important properties useful for analyzing system stability are investigated and frequency- and time-domain techniques are reviewed. Part III, Control, concerns the design of stabilizing control laws aimed at eliminating undesirable drilling vibrations; diverse control techniques based on infinite--dimensional system representations are designed and evaluated. The control proposals are shown to be effective in suppressing stick-slip and bit-bounce so that a considerable improvement of the overall drilling performance can be achieved. This self-contained book provides operational guidelines to avoid drilling vibrations. Furthermore, since the modeling and control techniques presented here can be generalized to treat diverse engineering problems, it constitutes a useful resource to researchers working on control and its engineering application in oil well drilling.
This book is a practical guide to downhole rock sampling and coring concepts, methods, systems, and procedures for practitioners and researchers. Its chapters are based upon years of extensive studies and research about the coring methods and via direct and continuous communication and consultation obtained from various service and operator companies such as Baker Hughes GE, NOV, OMV, and Sandvik. The contributors discuss the state-of-the-art coring methods and systems (mainly used in the petroleum industry), which include: * conventional coring; * wireline continuous coring; * invasion mitigation coring (low invasion, gel coring, sponge coring); * jam-detection, anti-jamming, full closure; * safe-coring and tripping; * oriented-coring; * pressure/in-situ coring; * logging-while-coring; * motor coring; * mini-coring; * coiled Tubing Coring; and * underbalanced coring. The contributors provide practical and applicable understanding of the procedures of these coring methods and systems, as well as the specific core barrel components, working mechanisms, and schematics of the tools and processes used. Because Coring Methods and Systems analyses and compares the core barrels used in both petroleum and mining industries, it enhances the communication and may allow knowledge transfer between the two industries. As core damage is a serious issue during coring and handling jeopardizing correct calibration of exploration data, Coring Methods and Systems has greatly focused on its identification and its mitigation. Therefore, it can be used as an ideal source for geologists, core analysts, and reservoir engineers, to ensure the retrieval of high-quality cores.
In order to reduce the cost of running blast furnaces (BFs),
injected pulverized coal is used rather than coke to fire BFs. As a
result of this, unburned fine materials are blown with the gas into
the bosh and dead man areas with possible detrimental effects on
gas flow and permeability of the coke column. The capacity of the
furnace to consume these particles by solution loss is probably one
of the limitations to coal injection. It is, therefore, important
to understand the physicochemical and aerodynamic behaviour of
fines including the change of in-furnace phenomena. The Committee of Pulverized Coal Combustion and In-Furnace
Reaction in BF was set up in 1993 as a cooperative research of the
Japan Society for the Promotion of Science (JSPS) and the Iron and
Steel Institute (ISIJ) to evaluate research initiative into this
problem. This book reports on the JSPS/ISIJ Committee's activities and
describes the interpretation of findings drawn from combustion
experiments and the results of live furnace applications, and
furnace performance.
This book had its genesis in a symposium on gas hydrates presented at the 2003 Spring National Meeting of the American Institute of Chemical Engineers. The symposium consisted of twenty papers presented in four sessions over two days. Additional guest authors were invited to provide continuity and cover topics not addressed during the symposium. Gas hydrates are a unique class of chemical compounds where molecules of one compound (the guest material) are enclosed, without bonding chemically, within an open solid lattice composed of another compound (the host material). These types of configurations are known as clathrates. The guest molecules, u- ally gases, are of an appropriate size such that they fit within the cage formed by the host material. Commonexamples of gas hydrates are carbon dioxide/water and methane/water clathrates. At standard pressure and temperature, methane hydrate contains by volume 180 times as much methane as hydrate. The United States Geological Survey (USGS) has estimated that there is more organic carbon c- tained as methane hydrate than all other forms of fossil fuels combined. In fact, methane hydrates could provide a clean source of energy for several centuries. Clathrate compounds were first discovered in the early 1800s when Humphrey Davy and Michael Faraday were experimenting with chlorine-water mixtures. |
![]() ![]() You may like...
Activate the Third Space - How to Align…
Bill Cornwell, Michael Switow
Hardcover
Microbiorobotics - Biologically Inspired…
Minjun Kim, Agung Julius, …
Hardcover
R3,415
Discovery Miles 34 150
Cross-Layer Design in Optical Networks
Suresh Subramaniam, Maite Brandt-Pearce, …
Hardcover
The Little SAS Enterprise Guide Book
Susan J Slaughter, Lora D Delwiche
Hardcover
R1,936
Discovery Miles 19 360
The Blinded City - Ten Years In…
Matthew Wilhelm-Solomon
Paperback
![]()
|