![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Energy technology & engineering > Fossil fuel technologies
This book is a compilation of selected papers from the 3rd International Petroleum and Petrochemical Technology Conference (IPPTC 2019). The work focuses on petroleum & petrochemical technologies and practical challenges in the field. It creates a platform to bridge the knowledge gap between China and the world. The conference not only provides a platform to exchanges experience but also promotes the development of scientific research in petroleum & petrochemical technologies. The book will benefit a broad readership, including industry experts, researchers, educators, senior engineers and managers.
First-generation ethanol plants were designed based on corn (maize grain), a dense, stable, storable and shippable commodity-type product with multiple applications. With these properties, corn was used as a feedstock for large-scale biorefineries without any challenges for a considerable length of time to allow its usage to grow exponentially. In the second-generation biofuels, the feedstocks used are low-cost carbon resources such as crop and forest residues and municipal solid waste. These materials are not dense; they have irregular size and shape, variable moisture, and are not readily storable and shippable. When the industry tested these feedstocks for biofuel production, they faced flowability, storage, transportation, and conversion issues. One way to overcome feeding, handling, transportation, and variable moisture challenges is to densify the biomass. The densification systems such as pellet mill and briquette press are commonly used to produce densified products. The densified products have uniform size, shape, and higher density. Also, the densified products are aerobically stable as they have the moisture of less than 10 % (w.b.).This book's focus is to understand how the densification process variables, biomass types and their blends, mechanical preprocessing, and thermal and chemical pretreatment methods impact the quality of the densified products produced for biofuel production.
Intelligent Digital Oil and Gas Fields: Concepts, Collaboration, and Right-time Decisions delivers to the reader a roadmap through the fast-paced changes in the digital oil field landscape of technology in the form of new sensors, well mechanics such as downhole valves, data analytics and models for dealing with a barrage of data, and changes in the way professionals collaborate on decisions. The book introduces the new age of digital oil and gas technology and process components and provides a backdrop to the value and experience industry has achieved from these in the last few years. The book then takes the reader on a journey first at a well level through instrumentation and measurement for real-time data acquisition, and then provides practical information on analytics on the real-time data. Artificial intelligence techniques provide insights from the data. The road then travels to the "integrated asset" by detailing how companies utilize Integrated Asset Models to manage assets (reservoirs) within DOF context. From model to practice, new ways to operate smart wells enable optimizing the asset. Intelligent Digital Oil and Gas Fields is packed with examples and lessons learned from various case studies and provides extensive references for further reading and a final chapter on the "next generation digital oil field," e.g., cloud computing, big data analytics and advances in nanotechnology. This book is a reference that can help managers, engineers, operations, and IT experts understand specifics on how to filter data to create useful information, address analytics, and link workflows across the production value chain enabling teams to make better decisions with a higher degree of certainty and reduced risk.
This thesis presents an important step towards a deeper understanding of naturally fractured carbonate reservoirs (NFCRs). It demonstrates the various kinds of discontinuities using geological evidence, mathematical kinematics model and computed tomography and uses this as a basis for proposing a new classification for NFCRs. Additionally, this study takes advantage of rock mechanics theory to illustrate how natural fractures can collapse due to fluid flow and pressure changes in the fractured media. The explanations and mathematical modeling developed in this dissertation can be used as diagnostic tools to predict fluid velocity, fluid flow, tectonic fracture collapse, pressure behavior during reservoir depleting, considering stress-sensitive and non-stress-sensitive, with nonlinear terms in the diffusivity equation applied to NFCRs. Furthermore, the book presents the description of real reservoirs with their field data as the principal goal in the mathematical description of the realistic phenomenology of NFCRs.
This book discusses all aspects of advanced engine technologies, and describes the role of alternative fuels and solution-based modeling studies in meeting the increasingly higher standards of the automotive industry. By promoting research into more efficient and environment-friendly combustion technologies, it helps enable researchers to develop higher-power engines with lower fuel consumption, emissions, and noise levels. Over the course of 12 chapters, it covers research in areas such as homogeneous charge compression ignition (HCCI) combustion and control strategies, the use of alternative fuels and additives in combination with new combustion technology and novel approaches to recover the pumping loss in the spark ignition engine. The book will serve as a valuable resource for academic researchers and professional automotive engineers alike.
Performance Management for the Oil, Gas, and Process Industries: A Systems Approach is a practical guide on the business cycle and techniques to undertake step, episodic, and breakthrough improvement in performance to optimize operating costs. Like many industries, the oil, gas, and process industries are coming under increasing pressure to cut costs due to ongoing construction of larger, more integrated units, as well as the application of increasingly stringent environmental policies. Focusing on the 'value adder' or 'revenue generator' core system and the company direction statement, this book describes a systems approach which assures significant sustainable improvements in the business and operational performance specific to the oil, gas, and process industries. The book will enable the reader to: utilize best practice principles of good governance for long term performance enhancement; identify the most significant performance indicators for overall business improvement; apply strategies to ensure that targets are met in agreed upon time frames.
Underground Coal Gasification (UCG) is carried out in unmined coal seams, using wells drilled from the surface and converting coal into synthesis gas. The gas can be used for power generation and synthesis of automotive fuels, fertilizers and other products. UCG offers financial, social, and environmental benefits over conventional coal extraction and utilization methods and may play a critical role in ensuring energy security in the future. Underground Coal Gasification and Combustion provides an overview of underground coal gasification technology, its current status and future directions. Comprehensive in approach, the book covers history, science, technology, hydrogeology, rock mechanics, environmental performance, economics, regulatory and commercial aspects of UCG projects. The first book on the subject in forty years, it is unique in analysing more than a century of global UCG developments by experts from Australia, Canada, Poland, Russia, Ukraine, United Kingdom, the USA and Uzbekistan.
The semiconductor industry is moving toward gas-phase reagents, increasing the relative importance of gas purity. Anyone who deals in the manufacturing of these devices needs to understand the technology available for modern gas analysis. Most specialty gas vendors have some re in place for quality assurance, but these usually are very simplistic and outdated methods. No book was available that gave guidance on providing accurate, reproducible data on specialty gas products. This is the first book that provides an introduction to current analytical methods and equipment for the analysis of high- purity gases used in the semiconductor industry and related fields.
There have been concerns about the integrity of thousands of wells drilled worldwide for different purposes ranging from oil and gas to geological carbon sequestration. This is the first book to integrate different aspects of wellbore integrity into a single volume. It looks at the energy sector's green wave movement by expanding an important topic for practitioners, regulators, and students. It is an area where petroleum and subsurface engineers will increasingly need to be involved in the future to address growing expectations regarding environmental impacts and sustainability. Coverage also includes recent developments in regulations and R&D with indications on emerging areas. Wellbore Integrity: From Theory to Practice will be a valuable resource for practicing engineers and students working on problems related to subsurface energy, subsurface disposals, and environmental impacts of oil and gas wells. In parallel, it will be a valuable reference for engineers and scientists interested in repurposing existing wells for carbon sequestration or geothermal purposes.
Practical Onshore Gas Field Engineering delivers the necessary framework to help engineers understand the needs of the reservoir, including sections on early transmission and during the life of the well. Written from a reservoir perspective, this reference includes methods and equipment from gas reservoirs, covering the gathering stage at the gas facility for transportation and processing. Loaded with real-world case studies and examples, the book offers a variety of different types of gas fields that demonstrate how surface systems can work through each scenario. Users will gain an increased understanding of today's gas system aspects, along with tactics on how to optimize bottom line revenue. As reservoir and production engineers face many challenges in getting gas from the reservoir to the final sales point, especially as a result of the shale boom, a new demand for more facility engineers now exists in the market. This book addresses new challenges in the market and brings new tactics to the forefront.
Industrial Piping and Equipment Estimation Manual delivers an invaluable resource for day-to-day operations. Packed full of worksheets covering combined and simple cycle power plants, refineries, compressor stations, ethanol, hydrogen and biomass plants, this reference helps the construction engineer and estimator learn how to create bids where scope and quantity differences can be identified and project impacts estimated. Beginning with an introduction devoted to labor, productivity measurement, estimating methods, and factors affecting construction labor productivity and impacts of overtime, the author then explores equipment through hands-on estimation tables, including sample estimates and statistical applications. The book rounds out with a glossary, abbreviations list, formulas, and metric/standard conversions, and is an ideal reference for estimators, engineers and managers with the level of detail and equipment breakdown necessary for today's industrial operations.
Low-Rank Coals for Power Generation, Fuel and Chemical Production provides a thorough introduction to lignite (brown coal) and subbituminous coals and explores how they can be used efficiently and economically in place of hard coal. The book examines the undesirable characteristics of low-quality coals, such as high moisture content, low calorific value, and aggressive ash characteristics, and the resulting refinements to standard technologies and practices required for successful combustion, gasification, and pyrolysis. The first part of this book provides a comprehensive and systematic review of the properties of low-rank coals and corresponding preparation methods, such as drying, cleaning, and upgrading. Power generation from low-rank coals is the focus of Part 2, with chapter topics ranging from high efficiency pulverized coal combustion and circulating fluidized bed combustion to emerging areas such as chemical looping and oxyfuel combustion. The final contributions address the important subjects of coal-to-liquids,polygeneration and coke production using low-rank coals, as well as the critical issue of carbon capture and storage. This book is a valuable resource for power generation engineers and researchers seeking to maximize the opportunities provided by these cheaper coal feedstocks for efficient and environmentally compatible power generation.
Plant Design and Operations, Second Edition, explores design and operational considerations for oil and gas facilities, covering all stages of the plant cycle, with an emphasis on safety and risk. The oil and gas industry is constantly looking for cost optimization strategies, requiring plant-based personnel to expand their knowledge base outside their discipline or subject. Relevant reference materials are scattered throughout various official standards, while staff lack the immediate hands-on knowledge to safely facilitate the full operational life cycle of the plant. This second edition is a complete source of solutions for major process projects including offshore facilities, chemical plants, oil refineries, and pipelines. This single reference provides insight for safer operations and maintenance best practices. It has been updated with more focus on safety in design and operations, standards, and compliance, and more detailed information on equipment and system/component design.
Fundamentals and Applications of Supercritical Carbon Dioxide (SCO2) Based Power Cycles aims to provide engineers and researchers with an authoritative overview of research and technology in this area. Part One introduces the technology and reviews the properties of SCO2 relevant to power cycles. Other sections of the book address components for SCO2 power cycles, such as turbomachinery expanders, compressors, recuperators, and design challenges, such as the need for high-temperature materials. Chapters on key applications, including waste heat, nuclear power, fossil energy, geothermal and concentrated solar power are also included. The final section addresses major international research programs. Readers will learn about the attractive features of SC02 power cycles, which include a lower capital cost potential than the traditional cycle, and the compounding performance benefits from a more efficient thermodynamic cycle on balance of plant requirements, fuel use, and emissions.
This book focuses on gasoline compression ignition (GCI) which offers the prospect of engines with high efficiency and low exhaust emissions at a lower cost. A GCI engine is a compression ignition (CI) engine which is run on gasoline-like fuels (even on low-octane gasoline), making it significantly easier to control particulates and NOx but with high efficiency. The state of the art development to make GCI combustion feasible on practical vehicles is highlighted, e.g., on overcoming problems on cold start, high-pressure rise rates at high loads, transients, and HC and CO emissions. This book will be a useful guide to those in academia and industry.
This book highlights various aspects of shale gas production and discusses the associated problems, which have greatly influenced the current situation on the global gas market. It focuses on issues such as production technologies, environmental protection, and the impacts of shale gas production on human beings. Further, it investigates the role of shale gas in the development and implementation of foreign policy of many nations that welcomed the possibility to produce this hydrocarbon in their own countries. Taking into consideration the information published by world energy research centers, the prospects of shale gas production in different regions of the world are examined in detail. Given its coverage and scope, the book will greatly benefit specialists in the areas of hydrocarbon production, international relations and foreign policy, world economics and technologies, ecology and environmental protection.
This book gathers cutting-edge studies on the relationship between energy innovations, economic growth, environmental regulation, promotion of renewable energy use, and climate change. Building on the research discussed in the editor's previous book Decarbonization and Energy Technology in the Era of Globalization, it discusses recent developments such as the impacts of globalization and energy efficiency on economic growth and environmental quality. It also explores the ways in which globalization has benefited green energy development, e.g. the expansion of new technologies and cleaner machinery, as well as the problems it has caused. Written by respected experts, the respective contributions address topics including econometric modelling of the behaviour of and dynamics between economic growth and environmental quality, aspects of energy production and consumption, oil prices, economic growth, trade openness, environmental quality, regulatory measures, and innovations in the energy sector. Providing a comprehensive overview of the latest research, the book offers a valuable reference guide for researchers, policymakers, practitioners and students in the fields of renewable energy development and economics.
Integrated Gasification Combined Cycle (IGCC) Technologies discusses this innovative power generation technology that combines modern coal gasification technology with both gas turbine and steam turbine power generation, an important emerging technology which has the potential to significantly improve the efficiencies and emissions of coal power plants. The advantages of this technology over conventional pulverized coal power plants include fuel flexibility, greater efficiencies, and very low pollutant emissions. The book reviews the current status and future developments of key technologies involved in IGCC plants and how they can be integrated to maximize efficiency and reduce the cost of electricity generation in a carbon-constrained world. The first part of this book introduces the principles of IGCC systems and the fuel types for use in IGCC systems. The second part covers syngas production within IGCC systems. The third part looks at syngas cleaning, the separation of CO2 and hydrogen enrichment, with final sections describing the gas turbine combined cycle and presenting several case studies of existing IGCC plants.
Time Lapse Approach to Monitoring Oil, Gas, and CO2 Storage by Seismic Methods delivers a new technology to geoscientists, well logging experts, and reservoir engineers, giving them a new basis on which to influence decisions on oil and gas reservoir management. Named ACROSS (Accurately Controlled and Routinely Operated Signal System), this new evaluation method is presented to address more complex reservoirs, such as shale and heavy oil. The book also discusses prolonged production methods for enhanced oil recovery. The monitoring of storage zones for carbon capture are also included, all helping the petroleum and reservoir engineer to fully extend the life of a field and locate untapped pockets of additional oil and gas resources. Rounded out with case studies from locations such as Japan, Saudi Arabia, and Canada, this book will help readers, scientists, and engineers alike to better manage the life of their oil and gas resources and reservoirs.
Shale oil and gas have altered the energy landscape, possibly permanently. They burst upon the fossil energy scene with a suddenness that initially defied prediction. Even the political balance of the world has changed. But, with the methods employed, the vast majority of the oil and gas remains in the ground. At the same time, serious environmental impact issues have been raised. A new volume in the Emerging Issues in Analytical Chemistry series, Sustainable Shale Oil and Gas: Analytical Chemistry, Geochemistry, and Biochemistry Methods was written on the premise that analytical methods to inform these areas were wanting. While not attempting to be comprehensive, it describes important analytical methods, some still in development. These methods are underpinned primarily by chemistry, but geochemistry and even biochemistry play significant roles. The book has a solutions flavor; problems are posed together with approaches to ameliorate them.
The demand for energy consumption is increasing rapidly. To avoid the impending energy crunch, more producers are switching from oil to natural gas. While natural gas engineering is well documented through many sources, the computer applications that provide a crucial role in engineering design and analysis are not well published, and emerging technologies, such as shale gas drilling, are generating more advanced applications for engineers to utilize on the job. To keep producers updated, Boyun Guo and Ali Ghalambor have enhanced their best-selling manual, Natural Gas Engineering Handbook, to continue to provide upcoming and practicing engineers the full scope of natural gas engineering with a computer-assisted approach.
Oil and Gas Pipelines and Piping Systems: Design, Construction, Management, and Inspection delivers all the critical aspects needed for oil and gas piping and pipeline condition monitoring and maintenance, along with tactics to minimize costly disruptions within operations. Broken up into two logical parts, the book begins with coverage on pipelines, including essential topics, such as material selection, designing for oil and gas central facilities, tank farms and depots, the construction and installment of transportation pipelines, pipe cleaning, and maintenance checklists. Moving over to piping, information covers piping material selection and designing and construction of plant piping systems, with attention paid to flexibility analysis on piping stress, a must-have component for both refineries with piping and pipeline systems. Heavily illustrated and practical for engineers and managers in oil and gas today, the book supplies the oil and gas industry with a must-have reference for safe and effective pipeline and piping operations.
Absorption-Based Post-Combustion Capture of Carbon Dioxide provides a comprehensive and authoritative review of the use of absorbents for post-combustion capture of carbon dioxide. As fossil fuel-based power generation technologies are likely to remain key in the future, at least in the short- and medium-term, carbon capture and storage will be a critical greenhouse gas reduction technique. Post-combustion capture involves the removal of carbon dioxide from flue gases after fuel combustion, meaning that carbon dioxide can then be compressed and cooled to form a safely transportable liquid that can be stored underground.
Gas and Oil Reliability Engineering: Modeling and Analysis, Second Edition, provides the latest tactics and processes that can be used in oil and gas markets to improve reliability knowledge and reduce costs to stay competitive, especially while oil prices are low. Updated with relevant analysis and case studies covering equipment for both onshore and offshore operations, this reference provides the engineer and manager with more information on lifetime data analysis (LDA), safety integrity levels (SILs), and asset management. New chapters on safety, more coverage on the latest software, and techniques such as ReBi (Reliability-Based Inspection), ReGBI (Reliability Growth-Based Inspection), RCM (Reliability Centered Maintenance), and LDA (Lifetime Data Analysis), and asset integrity management, make the book a critical resource that will arm engineers and managers with the basic reliability principles and standard concepts that are necessary to explain their use for reliability assurance for the oil and gas industry. |
You may like...
Ultra-Supercritical Coal Power Plants…
Dongke Zhang Ftse
Hardcover
Crises in Oil, Gas and Petrochemical…
Mohammad Reza Rahimpour, Babak Omidvar, …
Paperback
R4,566
Discovery Miles 45 660
Power-to-Gas: Bridging the Electricity…
Mohammad Amin Mirzaei, Mahdi Habibi, …
Paperback
R3,213
Discovery Miles 32 130
Education and Training for the Oil and…
Phil Andrews, Jim Playfoot
Hardcover
R2,056
Discovery Miles 20 560
Risk Assessment and Management for Ships…
Yong Bai, Jeom Kee Paik
Paperback
R5,740
Discovery Miles 57 400
Proceedings of the 1st Annual Gas…
Hassan E. Alfadala, G.V.Rex Reklaitis, …
Hardcover
R6,165
Discovery Miles 61 650
Production and Purification of…
Yun Hang Hu, Xiaoliang Ma, …
Hardcover
R5,467
Discovery Miles 54 670
|