![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Energy technology & engineering > Fossil fuel technologies
Creates a wide-ranging knowledge base on gas sensor design and fabrication work as applied to industrial and hazardous sectors Provides restructured literature for researchers and academicians working in the field of design and fabrication of gas sensors. Delivers state-of-the-art work going on in the domain, including micro- and nano-sensors Covers the whole range of gas-sensing aspects, from basics, synthesis, and processing to characterization, testing, and application development Serves as a ready reckoner with a wealth of information to aspiring graduate and postdoctoral researchers engaged in the gas-sensing domain
The characterisation of fluid transport properties of rocks is one of the most important, yet difficult, challenges of reservoir geophysics, but is essential for optimal development of hydrocarbon and geothermal reservoirs. This book provides a quantitative introduction to the underlying physics, application, interpretation, and hazard aspects of fluid-induced seismicity with a particular focus on its spatio-temporal dynamics. It presents many real data examples of microseismic monitoring of hydraulic fracturing at hydrocarbon fields and of stimulations of enhanced geothermal systems. The author also covers introductory aspects of linear elasticity and poroelasticity theory, as well as elements of seismic rock physics and mechanics of earthquakes, enabling readers to develop a comprehensive understanding of the field. Fluid-Induced Seismicity is a valuable reference for researchers and graduate students working in the fields of geophysics, geology, geomechanics and petrophysics, and a practical guide for petroleum geoscientists and engineers working in the energy industry.
Vacuum technology finds itself in many areas of industry and research. These include materials handling, packaging, gas sampling, filtration, degassing of oils and metals, thin-film coating, electron microscopy, particle acceleration, and impregnation of electrical components. It is vital to design systems that are appropriate to the application, and with so many potential solutions this can become overwhelming. Vacuum Technique provides an overview of vacuum technology, its different design methodologies, and the underlying theory. The author begins with a summary of the properties of low-pressure gases, then moves on to describe mathematical modeling of gas transfer in the vacuum system, the operation of pumps and gauges, computer-aided synthesis and analysis of systems, and the design of different vacuum systems. In particular, the author discusses the structure and characteristics of low, middle, high, and superhigh vacuum systems, as well as the characteristics of joints, materials, movement inputs, and all aspects of production technology and construction standards. Using specific examples rather than describing the various elements, Vacuum Technique supplies engineers, technicians, researchers, and students with needed expertise and a comprehensive guide to designing, selecting, and using an appropriate vacuum system for a specific purpose.
This book presents, in a self-contained form, the equations of fluid flow in porous media, with a focus on topics and issues that are relevant to petroleum reservoir engineering. No prior knowledge of the field is assumed on the part of the reader, and particular care is given to careful mathematical and conceptual development of the governing equations, and solutions for important reservoir flow problems. Fluid Flow in Porous Media starts with a discussion of permeability and Darcy's law, then moves on to a careful derivation of the pressure diffusion equation. Solutions are developed and discussed for flow to a vertical well in an infinite reservoir, in reservoirs containing faults, in bounded reservoirs, and to hydraulically fractured wells. Special topics such as the dual-porosity model for fractured reservoirs, and fluid flow in gas reservoirs, are also covered. The book includes twenty problems, along with detailed solutions.As part of the Imperial College Lectures in Petroleum Engineering, and based on a lecture series on the same topic, this book provides the introductory information needed for students of the petroleum engineering and hydrology.
In Chemistry of Petrochemical Processes, readers find a handy and
valuable source of information containing insights into
petrochemical reactions and products, process technology, and
polymer synthesis. The book reviews and describes the reactions and
processes involved in transforming petroleum-based hydrocarbons
into the chemicals that form the basis of the multi-billion dollar
petrochemical industry. In addition, the book includes information
on new process developments for the production of raw materials and
intermediates for petrochemicals that have surfaced since the
book's first edition.
Well Control for Completions and Interventions explores the standards that ensure safe and efficient production flow, well integrity and well control for oil rigs, focusing on the post-Macondo environment where tighter regulations and new standards are in place worldwide. Too many training facilities currently focus only on the drilling side of the well's cycle when teaching well control, hence the need for this informative guide on the topic. This long-awaited manual for engineers and managers involved in the well completion and intervention side of a well's life covers the fundamentals of design, equipment and completion fluids. In addition, the book covers more important and distinguishing components, such as well barriers and integrity envelopes, well kill methods specific to well completion, and other forms of operations that involve completion, like pumping and stimulation (including hydraulic fracturing and shale), coiled tubing, wireline, and subsea intervention.
This edited work covers diesel fuel chemistry in a systematic fashion from initial fuel production to the tail pipe exhaust. The chapters are written by leading experts in the research areas of analytical characterization of diesel fuel, fuel production and refining, catalysis in fuel processing, pollution minimization and control, and diesel fuel additives.
The book presents a comprehensive and systematic account of the concept, the current status and the costs of the German energy transition: the Energiewende. Written by an insider who has been working in the German energy industry for over 20 years, it follows a strictly non-political, neutral approach and clearly outlines the most relevant facts and figures. In particular, it describes the main impacts of the Energiewende on the German power system and Germany's national economy. Furthermore, it addresses questions that are of global interest with respect to energy transitions, such as the cost to the national economy, the financial burden on private households and companies and the actual effects on CO2 emissions. The book also discusses what could have been done better in terms of planning and implementing the Energiewende, and identifies important lessons for other countries that are considering a similar energy transition.
Introduction to Petroleum Biotechnology introduces the petroleum engineer to biotechnology, bringing together the various biotechnology methods that are applied to recovery, refining and remediation in the uses of petroleum and petroleum products. A significant amount of petroleum is undiscoverable in reservoirs today using conventional and secondary methods. This reference explains how microbial enhanced oil recovery is aiding to produce more economical and environmentally-friendly metabolic events that lead to improved oil recovery. Meanwhile, in the downstream side of the industry, petroleum refining operators are facing the highest levels of environmental regulations while struggling to process more of the heavier crude oils since conventional physical and chemical refining techniques may not be applicable to heavier crudes. This reference proposes to the engineer and refining manager the concepts of bio-refining applications to not only render heavier crudes as lighter crudes through microbial degradation, but also through biodenitrogenation, biodemetallization and biodesulfurization, making more petroleum derivatives purified and upgraded without the release of more pollutants. Equipped for both upstream and downstream to learn the basics, this book is a necessary primer for today's petroleum engineer.
Hydraulic Fracture Modeling delivers all the pertinent technology and solutions in one product to become the go-to source for petroleum and reservoir engineers. Providing tools and approaches, this multi-contributed reference presents current and upcoming developments for modeling rock fracturing including their limitations and problem-solving applications. Fractures are common in oil and gas reservoir formations, and with the ongoing increase in development of unconventional reservoirs, more petroleum engineers today need to know the latest technology surrounding hydraulic fracturing technology such as fracture rock modeling. There is tremendous research in the area but not all located in one place. Covering two types of modeling technologies, various effective fracturing approaches and model applications for fracturing, the book equips today's petroleum engineer with an all-inclusive product to characterize and optimize today's more complex reservoirs.
Underground Coal Gasification (UCG) is carried out in unmined coal seams, using wells drilled from the surface and converting coal into synthesis gas. The gas can be used for power generation and synthesis of automotive fuels, fertilizers and other products. UCG offers financial, social, and environmental benefits over conventional coal extraction and utilization methods and may play a critical role in ensuring energy security in the future. Underground Coal Gasification and Combustion provides an overview of underground coal gasification technology, its current status and future directions. Comprehensive in approach, the book covers history, science, technology, hydrogeology, rock mechanics, environmental performance, economics, regulatory and commercial aspects of UCG projects. The first book on the subject in forty years, it is unique in analysing more than a century of global UCG developments by experts from Australia, Canada, Poland, Russia, Ukraine, United Kingdom, the USA and Uzbekistan.
This book covers several aspects of reservoir management, from initial analysis to enhanced recovery methods, simulation, and history matching. Split into four parts, part one provides readers with an introduction to the physical properties of reservoir rocks. Part two provides an introduction to enhanced recovery methods used for conventional oil production. Part three shows how numerical methods can be used to simulate the behaviour of oil and gas reservoirs. Finally, part four looks at history matching of reservoirs through the building of numerical models using past data, in order to provide best practice for future reservoir development and management.Written as the third volume in the Imperial College Lectures in Petroleum Engineering, and based on lectures that have been given in the world-renowned Imperial College Masters Course in Petroleum Engineering, Topics in Reservoir Management provides the basic information needed for students and practitioners of petroleum engineering and petroleum geoscience.
This book aims at illustrating several examples of different membrane compositions ranging from inorganic, polymeric, metallic, metal organic framework, and composite which have been successfully deployed to separate industrially relevant gas mixtures including hydrogen, nitrogen, methane, carbon dioxide, olefins/parafins among others. Each book chapter highlights some of the current and key fundamental and technological challenges for these membranes that must be overcome in order to envision its application at industrial level.
This new edition is expanded to include 26 new man-hour tables on compressors, dryers, dampers, filters, coolers, and heaters. This manual eliminates guesswork and enables you to produce fast, accurate equipment installation labor estimates.
The long-term future for coal looks bleak. The recent UN climate change conference in Paris called for an end to the use of fossil fuels. However, coal remains one of the world’s most important sources of energy, fuelling more than 40% of electricity generation worldwide, with many developing nations relying almost wholly on coal-fuelled electricity. Coal has been the fastest growing energy source in recent years and is essential for many industrial activities, but the coal industry is hugely damaging for the environment. A major driver in climate change and causing around 40% of the world’s carbon dioxide emissions, coal fuel comes at a high environmental price. Furthermore, mining and air pollution kill thousands each year. A timely addition to the series, this book critically reviews the role of coal in the 21st century, examining energy needs, usage and health implications. With case studies and an examination of future developments and economics, this text provides an essential update on an environmental topic the world cannot ignore.
Applied Statistical Modeling and Data Analytics: A Practical Guide for the Petroleum Geosciences provides a practical guide to many of the classical and modern statistical techniques that have become established for oil and gas professionals in recent years. It serves as a "how to" reference volume for the practicing petroleum engineer or geoscientist interested in applying statistical methods in formation evaluation, reservoir characterization, reservoir modeling and management, and uncertainty quantification. Beginning with a foundational discussion of exploratory data analysis, probability distributions and linear regression modeling, the book focuses on fundamentals and practical examples of such key topics as multivariate analysis, uncertainty quantification, data-driven modeling, and experimental design and response surface analysis. Data sets from the petroleum geosciences are extensively used to demonstrate the applicability of these techniques. The book will also be useful for professionals dealing with subsurface flow problems in hydrogeology, geologic carbon sequestration, and nuclear waste disposal.
Abrasive Water Jet Perforation and Multi-Stage Fracturing gives petroleum engineers, well completion managers and fracturing specialists a critical guide to understanding all the details of the technology including materials, tools, design methods and field applications. The exploitation and development of unconventional oil and gas resources has continued to gain importance, and multi-stage fracturing with abrasive water jets has emerged as one of the top three principal methods to recover unconventional oil and gas, yet there is no one collective reference to explain the fundamentals, operations and influence this method can deliver. The book introduces current challenges and gives solutions for the problems encountered. Packed with references and real-world examples, the book equips engineers and specialists with a necessary reservoir stimulation tool to better understand today's fracturing technology.
This monograph covers different aspects related to utilization of alternative fuels in internal combustion (IC) engines with a focus on biodiesel, dimethyl ether, alcohols, biogas, etc. The focal point of this book is to present engine combustion, performance and emission characteristics of IC engines fueled by these alternative fuels. A section of this book also covers the potential strategies of utilization of these alternative fuels in an energy efficient manner to reduce the harmful pollutants emitted from IC engines. It presents the comparative analysis of different alternative fuels in a variety of engines to show the appropriate alternative fuel for specific types of engines. This book will prove useful for both researchers as well as energy experts and policy makers.
Practical Onshore Gas Field Engineering delivers the necessary framework to help engineers understand the needs of the reservoir, including sections on early transmission and during the life of the well. Written from a reservoir perspective, this reference includes methods and equipment from gas reservoirs, covering the gathering stage at the gas facility for transportation and processing. Loaded with real-world case studies and examples, the book offers a variety of different types of gas fields that demonstrate how surface systems can work through each scenario. Users will gain an increased understanding of today's gas system aspects, along with tactics on how to optimize bottom line revenue. As reservoir and production engineers face many challenges in getting gas from the reservoir to the final sales point, especially as a result of the shale boom, a new demand for more facility engineers now exists in the market. This book addresses new challenges in the market and brings new tactics to the forefront.
This book introduces in detail the physical and chemical phenomena and processes during petroleum production. It covers the properties of reservoir rocks and fluids, the related methods of determining these properties, the phase behavior of hydrocarbon mixtures, the microscopic mechanism of fluids flowing through reservoir rocks, and the primary theories and methods of enhancing oil recovery. It also involves the up-to-date progress in these areas. It can be used as a reference by researchers and engineers in petroleum engineering and a textbook for students majoring in the area related with petroleum exploitation.
Plant Design and Operations, Second Edition, explores design and operational considerations for oil and gas facilities, covering all stages of the plant cycle, with an emphasis on safety and risk. The oil and gas industry is constantly looking for cost optimization strategies, requiring plant-based personnel to expand their knowledge base outside their discipline or subject. Relevant reference materials are scattered throughout various official standards, while staff lack the immediate hands-on knowledge to safely facilitate the full operational life cycle of the plant. This second edition is a complete source of solutions for major process projects including offshore facilities, chemical plants, oil refineries, and pipelines. This single reference provides insight for safer operations and maintenance best practices. It has been updated with more focus on safety in design and operations, standards, and compliance, and more detailed information on equipment and system/component design.
Low-Rank Coals for Power Generation, Fuel and Chemical Production provides a thorough introduction to lignite (brown coal) and subbituminous coals and explores how they can be used efficiently and economically in place of hard coal. The book examines the undesirable characteristics of low-quality coals, such as high moisture content, low calorific value, and aggressive ash characteristics, and the resulting refinements to standard technologies and practices required for successful combustion, gasification, and pyrolysis. The first part of this book provides a comprehensive and systematic review of the properties of low-rank coals and corresponding preparation methods, such as drying, cleaning, and upgrading. Power generation from low-rank coals is the focus of Part 2, with chapter topics ranging from high efficiency pulverized coal combustion and circulating fluidized bed combustion to emerging areas such as chemical looping and oxyfuel combustion. The final contributions address the important subjects of coal-to-liquids,polygeneration and coke production using low-rank coals, as well as the critical issue of carbon capture and storage. This book is a valuable resource for power generation engineers and researchers seeking to maximize the opportunities provided by these cheaper coal feedstocks for efficient and environmentally compatible power generation.
Low Salinity and Engineered Water Injection for Sandstone and Carbonate Reservoirs provides a first of its kind review of the low salinity and engineered water injection (LSWI/EWI) techniques for today's more complex enhanced oil recovery methods. Reservoir engineers today are challenged in the design and physical mechanisms behind low salinity injection projects, and to date, the research is currently only located in numerous journal locations. This reference helps readers overcome these challenging issues with explanations on models, experiments, mechanism analysis, and field applications involved in low salinity and engineered water. Covering significant laboratory, numerical, and field studies, lessons learned are also highlighted along with key areas for future research in this fast-growing area of the oil and gas industry. After an introduction to its techniques, the initial chapters review the main experimental findings and explore the mechanisms behind the impact of LSWI/EWI on oil recovery. The book then moves on to the critical area of modeling and simulation, discusses the geochemistry of LSWI/EWI processes, and applications of LSWI/EWI techniques in the field, including the authors' own recommendations based on their extensive experience. It is an essential reference for professional reservoir and field engineers, researchers and students working on LSWI/EWI and seeking to apply these methods for increased oil recovery.
Compositional Grading in Oil and Gas Reservoirs offers instruction, examples, and case studies on how to answer the challenges of modeling a compositional gradient subject. Starting with the basics on PVT analysis, applied thermodynamics, and full derivations of irreversible thermodynamic-based equations, this critical reference explains gravity-modified equations to be applied to reservoirs, enabling engineers to obtain fluid composition at any point of the reservoir from measured data to create a stronger model calibration. Once model-parameters are re-estimated, new sensibility can be acquired for more accurate modeling of composition, aiding engineers with stronger production curves, reserve estimations, and design of future development strategies. Multiple examples and case studies are included to show the application of the theory from very simple to more complex systems, such as actual reservoirs influenced by thermal diffusion and gravity simultaneously. Other example include a layer for which asphaltene precipitation takes place in the reservoir and three -phase flash algorithms for liquid-liquid-vapor equilibrium calculations, detailing the techniques necessary to ensure convergence. The book combines practical studies with the importance in modeling more complex phenomena, filling a gap for current and upcoming reservoir engineers to expand on solutions and make sense of their reservoir's output results.
Lacustrine Shale Gas: Case Study from the Ordos Basin examines the special sedimentation and formation environment based on the actual exploration of lacustrine shale gas. Using the Chang7 black shale of Yanchang formation in Ordos basin as an example, this book deeply dissects the Lacustrine shale geological characteristics and offers fresh insights into Lacustrine shale geochemistry, shale reservoir, hydrocarbon accumulation and resource evaluation. The book not only enriches, develops and contributes to new theories of shale gas exploration, but also contributes to a new research field, lacustrine shale gas exploration. Shale gas is the mixed phase natural gas that includes adsorbed phase and free phase gas. It is accumulated in the rich organic matter in shale. In recent years, with great changes in global oil and gas exploration and energy supply situation, shale gas has attracted a lot of attention, becoming the focus of the energy industry. |
![]() ![]() You may like...
Elements of Petroleum Geology
Richard C. Selley, Stephen A Sonnenberg
Hardcover
Proceedings of the 1st Annual Gas…
Hassan E. Alfadala, G.V.Rex Reklaitis, …
Hardcover
R6,404
Discovery Miles 64 040
Power-to-Gas: Bridging the Electricity…
Mohammad Amin Mirzaei, Mahdi Habibi, …
Paperback
R3,326
Discovery Miles 33 260
Reservoir Simulations - Machine Learning…
Shuyu Sun, Tao Zhang
Paperback
R3,139
Discovery Miles 31 390
Ultra-Supercritical Coal Power Plants…
Dongke Zhang Ftse
Hardcover
|